
In 11L EE DenT"
NAVAL POSTGRADUATE SCHOOL

Monterey, California

.~s STI-E 1

* 7

0DETERMINING THE LOCATION OF AN
OBSERVER WITH RESPECT TO

AERIAL PHOTOGRAPHS

by

Jill Donahue Wolfe

December 1988

Thesis Advisor: Neil C. Rowe

Approved for public release; distribution
is unlimited. DTIC

ELECTE
MAY 17 1989

SC~H

819 5 17 043

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIPUTION/AVAILABIITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate SchoolN Code 37 NavalPostgraduateSchool

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey. California 93943*5000 :Monterey, California 93943-5000

Sa. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERr
ORGANIZATION (if applicable)

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT ITASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

DETERMINING THE LOCATION OF AN OBSERVER WITH RESPECT TO AERIAL PHOTOGRAPHS

12. PERSONAL AUTHOR(S) Wolfe Jill D

13a. TYPE OF REPORT 13b. TIMvE COVERED 14. DATE OF REPORT (Year, Month, Day) 1.PGE COUNT
* Master's Thesis- FROM ____T____ 1988 December 8

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Computer vision; motion of an observer; aerial photo

interpretation.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
In this study, the possibility of using a computer to detect the motion of an observer

by comparing two successive aerial photographs is examined. The purpose of the study was
to experiment with a technique for finding a point common to both images. The technique
presented uses only sharp boundary lines and their distribution in the images to produce the
"primal sketches" of the image. Once the "primal sketches" are made, the original images
are not referred to again. A point common to both images is identified by comparing the
number of cells with strong gradient magnitudes and their distribution in 3-pixel by 3-pixel
blocks. The technique produces excellent results in analyzing simulated successive
photographs, suggesting good results with photographs that are taken in succession by a
moving observer. Compared with other work on image correlation and object identification,
the technique uses fewer features (only two) in its primal sketches, and it does not need
any human intervention. Possible applications are photo interpretation, high-altitude
navigation, and underwater station-keeping.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. El DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) £2c OFFICE SYMBOL
Neil C. Rowe 408-646-2462 Code*52RP
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete *U, Gu.o.,,,nm.M P--ntn O,,€.. 186-40-.24,

Approved for public release; distribution is unlimited

Determining the Location of an Observer
With Respect to Aerial Photographs

by

Jill Donahue Wolfe
Lieutenant Commander, United States Navy

B.A., East Tennessee State University, 1975

Submitted in partital fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

Author: L k &
oJill Donahue Wolfe.

Approved by: W
Neil C. Rowe, Thesis Advisor

Robert B. McGhee, Second Reader

Robert B. McGhee, Chairman
Department of Computer Science

Kneal -A shall
Dean of informationciences

ABSTRACT

In this study, the possibility of using a computer to

detect the motion of an observer by comparing two successive

aerial photographs is examined. The purpose of the study was

to experiment with a technique for finding a point common to

both images. The technique presented uses only sharp boundary

lines and their distribution in the images to produce the

"primal sketches" of the image. Once the "primal sketches"

are made, the original images are not referred to again. A

point common to both images is identified by comparing the

number of cells with strong gradient magnitudes and their

distribution in 3-pixel by 3-pixel blocks. The technique

produces excellent results in analyzing simulated successive

photographs, suggesting good results with photographs that are

taken in succession by a moving observer. Compared with other

work on image correlation and object identification, the

technique uses fewer features (only two) in its primal

sketches, and it does not need any human intervention.

Possible applications are photo interpretation, high-altitude

navigation, and underwater station-keeping. F

NTIS GRA&I

_- DTIC TAd 0

Availability Cod83

I o

*0 'I Av a nd/or
iii Dist Spelal

TABLE OF CONTENTS

I. INTRODUCTION....................1

II. SURVEY OF PREVIOUS WORK........................5

A. INTRODUCTION.....................5

B. GENERAL APPROACHES TO COMPUTER VISION ... 5

C. STEREO MATCHING AND MOTION DETECTION ... 7

D. DETECTING ROADS IN AERIAL PHOTOGRAPHS ... 8

E. STATION KEEPING USING BOTTOM-TRACKING
SONAR....................................10

III. DESCRIPTION OF APPLICATION....................12

A. INTRODUCTION........................12

B. APPLICATION...................12

C. ASSUMPTIONS.................13

D. SITUATION MODELED........................13

E. IMAGES USED................................14

IV. IMPLEMENTATION....................17

A. INTRODUCTION.................17

B. PROGRAM INPUT............................18

C. PROGRAM OUTPUT................19

D. MAJOR INTERACTIONS....................19

E. FUNCTIONS WRITTEN BY OTHERS.........21

F. DATA STRUCTURES............................22

iv

G. PROGRAM COMPONENTS...............23

1. Initializing Functions 24

2. Preprocessing Functions..........24

3. Primary High-level Function........29

4. Primary Functions............29

5. Display Functions............33

6. Miscellaneous Functions..........33

H. ERROR CHECKING AND USER FRIENDLINESS . .. 34

1. Error Checking...............34

2. User Friendliness............34

I. DIFFICULTIES WITH THRESHOLD.........34

V. RESULTS......................38

A. INTRODUCTION.................38

B. EXPERIMENTAL PROCEDURES............38

C. AVERAGE CPU TIMES...............40

D. ACCURACY OF THE RESULTS............42

VI. CONCLUSIONS...................43

A. MAJOR ACHIEVEMENTS...............43

B. WEAKNESSES...................44

C. OTHER CONCLUSIONS...............44

D. SUMMARY...................47

APPENDIX A: PROGRAM...................48

APPENDIX B: RESULTS OF SELECTED TESTS.........63

APPENDIX C: SAMPLE RUNS................65

APPENDIX D: USER'S MANUAL................68

Iv

LIST OF REFERENCES...................70

INITIAL DISTRIBUTION LIST................71

vi

LIST OF FIGURES

III-1. First Image Used to Test Program..........15

111-2. Second Image Used to Test Program.........16

IV-l. Block Diagram of Main Program Interactions 20

IV-2. *subimage-gradient-array* for Image 1 26

IV-3. Computing the Unique Index Value of

a Nine-Cell Block.................27

IV-4. *subimage-nu-edges-array* for Image 1. 28

IV-5. *subimage-index-array* for Image 1.........29

IV-6. Matching Patterns of Five-Edge Blocks 31

IV-7. Difficulty in Selecting Threshold

for Image 2.....................36

IV-8. Effect of Threshold on Edges.............37

V-1. Sample Results of Running the Program
without function select-threshold.........39

A-1. Sample Screen and File Output............51

vii

ACKNOWLEDGMENT

I wish to acknowledge the help, guidance, and support

provided by my father, to whose memory this thesis is

dedicated.

viii

I. INTRODUCTION

This thesis addresses the problem of detecting motion of

an observer above the earth's surface. Specifically, it

explores ways to detect the motion of an observer by comparing

two successive images taken by the observer, identifying a

feature present in both images, and then measuring the

distance that the feature has moved from the first image to

the second. The images are two black and white photographs

converted to digitized images, the basic element of which is

a picture element (pixel). As long as the observer has not

rotated between taking two images, comparing the digitized

images pixel by pixel is easily done, but this brute force

method of comparing images is not efficient unless a match is

found on the first scan of each image (best case). In the

worst case, for example, it would take 800 scans per image and

1,280,000 comparisons to compare a twenty-pixel by

twenty-pixel image to a forty-pixel by forty-pixel image.

Therefore, optimization of the comparison is a major part of

the problem. The idea is to compare only those parts of the

images that are statistically interesting instead of comparing

every pixel in one image to every pixel in the other.

1

The military has long been interested in automated

analysis of reconnaissance photographs. Having a computer

interpret an image eliminates the need to train a human to do

it. Computers can include image enhancement as part of the

analysis, bringing out details impossible to detect with the

human eye. Computers can also detect very small changes in

successive images; such changes must be significantly greater

before the human eye can see it. High altitude navigation can

be aided by a computer that can detect the motion of the

aircraft over the ground by comparing two successive

photographs taken by the aircraft. Such a computer could

accurately and quickly compute speed over the ground.

Computers have been used successfully to solve various

visual problems. A computer can make the precise measurements

needed for detecting motion. In addition, a computer can

easily and quickly do any necessary preprocessing of digitized

images and can quickly compare the statistical information

gathered by the preprocessing. In particular, a computer

optimized to work with the language LISP can carry out both

mathematical computations and list processing very rapidly;

array processing is also fast in LISP. Fast mathematical

calculations and fast list and array processing are both

needed for detecting motion with the techniques presented in

this thesis. A LISP computer could fit aboard some types of

aircraft, and any such ground-based computer could be used to

2

analyze photographs after the aircraft's mission is completed.

For these reasons, solving this problem on a computer in LISP

became the basis for this thesis.

New ideas used in solving the problem include:

Eliciting two sets of special statistics from each image
after first finding the gradient magnitude for each
pixel. The gradient used is the square of the sum of the
differences between a pixel and its right and bottom
neighbors; an edge exists at that pixel if the gradient
magnitude of the pixel exceeds a certain amount (called
the threshold). The sets of statistics elicited are
the number of edges in each of the three-pixel by
three-pixel blocks into which the images are divided, and
a unique code value assigned each block based on the
number and position of the edges contained in it. The
blocks into which the images are divided are not adjacent
three-pixel by three-pixel blocks but rather overlapping
blocks--a forty by forty image would contain 1369 such
blocks; each pixel in the images, with the exception of
the pixels in the last two columns and rows, is the upper
left-hand corner of one of these blocks.

Searching for a match in the two images by finding two
points (one from each image) that exhibit the exact same
values for three different statistics about one feature,
the edges in the two logical three-pixel by three-pixel
blocks defined by the two points: the number of edges
in the three-pixel by three-pixel blocks, the values
assigned to the blocks based on the positions of the
edges within them, and the direction and distance of
these blocks from all other blocks, in their respective
images, that contain the same number of edges.

The problem is solved simply, using the single feature,

a few straightforward mathematical calculations, and some list

processing. The program also automatically chooses the

threshold. In contrast, solutions found by others to similar

problems require multiple features and human interaction with

the computer to teach it and to choose the features and

thresholds to be used.

3

The remaining chapters of this thesis explain the program.

Chapter II is a discussion of related theses that served as

points of departure for the program and of papers that

provided insights into techniques used to solve other visual

problems. Chapter III discusses the various assumptions made

in approaching the problem, expands on the situation that the

program models, and explains how motion of the observer is

represented to the program. Chapter IV describes the program

in some detail. Chapter V discusses the results produced by

the program. Chapter VI provides the conclusions drawn from

the results.

4

II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

In sections B and C, some ideas that have been used to

solve various vision problems are presented. In sections D

and E, two theses that served as points of departure for this

thesis are briefly explained.

B. GENERAL APPROACHES TO COMPUTER VISION

A convenient way to think of an image is as a function

giving the gray level at every point on the image plane. Gray

levels vary from 0 (totally black) to 1 (maximum brightness).

Since an image surface is two-dimensional, a Cartesian

coordinate system can be used to assign x and y coordinates

to the image surface. The image can be divided into square

cells, each of which is assigned x-y coordinates. Each square

cell is a pixel (short for "picture element"), the image's

smallest unit of measure. Further, the image can be

reproduced on a graphics screen by displaying the average gray

level for each pixel of the image [Ref. l:p. 89]. These

average gray levels can also be stored in arrays with indices

that correspond directly to the x and y coordinates of the

image.

5

Vision processing can be divided into two phases: early

and late. In early vision, a primal sketch is produced. A

primal sketch is a database of data structures, each of which

describes a feature. Primal sketches contain three kinds of

features, the most interesting of which is an edge, for

purposes of this thesis. An edge is a small patch where the

gray level goes from dark to light [Ref. l:pp. 99-100]. The

existence of an edge depends on the degree to which the gray

level changes from dark (0 at the blackest) to light (1 at the

whitest); that is, a threshold may be defined that allows the

difference between the gray levels of two pixels to be called

an edge if the difference is only .001, while in other cases,

the difference may have to be as much as .4 for it to be

designated an edge.

It may be that, once a primal sketch is produced, it is

not necessary to look at the original image again [Ref. l:p.

99]. That is the approach tried in this thesis, as it was in

LT Jean Sando's work [Ref. 2]. Reference 3 describes an

approach to stereo image matching which also uses only the

primal sketches produced. The major disadvantage of the

method described in [Ref. 2] and that described in [Ref. 3]

is that human interaction is required to teach the computer

what to extract from the image.

6

C. STEREO MATCHING AND MOTION DETECTION

Stereo matching involves finding corresponding points in

two slightly different images of the same scene. Since the

two images are taken from different positions, some points

visible in one image may be obstructed in the other.

According to Roman, Laine, and Cox [Ref. 3],

Most approaches [to stereo vision] may be classified as
area-based or feature-based. Area-based techniques rely
on the surface continuity assumption and often involve
correlation- based matching. Feature-based approaches
focus on intensity variations that correspond to physical
and geometric properties and intensity anomalies which may
not have any physical relevance. Matching is often doneat
the symbolic level. Much effort has been devoted to the
study of feature-based techniques because they provide
better localization and exploit more contextual
information. [Ref. 3:p. 171]

They go on to offer an incremental matching strategy, in which

the user selects features which he thinks stand the best

chance of being matched successfully. Among the features that

the user can choose are edge strength, orientation, length,

and texture; the feature chosen can be used alone to find the

match or in combination with other features [Ref 3:pp.

171-172].

Stereo matching is very similar to the problem addressed

in this thesis. Both stereo matching and the program

presented in this thesis try to find matching edges in two

similar images. This program is very successful in finding

matches using one feature only, and it does not require

7

interaction with the user. Other research shows that the same

technique used to find matching edges in two similar images

also can detect the motion of the observer that took the

images.

D. DETECTING ROADS IN AERIAL PHOTOGRAPHS

The purpose of LT Jean Sando's thesis [Ref. 2] was to find

roads in an aerial photograph by using texture to identify the

regions of a digitized image of the photograph. The program

gathered statistical information that provided evidence as to

which textures indicated road areas and which textures

signalled off-road areas. The images had to be divided into

units, called windows, because texture has meaning only in

relation to groups of pixels or points. In general, the size

and shape of windows depends on the size and shape of the

objects to be identified (Ref. 2:p. 12]. Here, two categories

of windows were designated. The inner window was the area

being classified; the outer window was centered on the inner

window but was larger. To quote LT Sando,

The three features chosen for this study were the mean
of the inner window, the variance of the inner window and
the variance of the outer window. The mean of the outer
window was not used because early tests indicated the
results would be virtually identical to the result from
the inner window mean. The mean of the inner window
defines the gray level of the window. The gray level is
important because in most cases there is a distinct
difference in this feature between the two textures. The
variance from the inner window defines the granularity,
or roughness of the window. The outer window is used to
determine if the granularity varies as the size of the
window approaches or exceeds the size of the object, in

8

this case the road. These moments were chosen because the
calculations were relatively simple and they represent
features that intuitively suggest the different properties
the human eye might pick out. [Ref. 2:p. 16]

Each window was identified by using two different methods.

In the first, each scan window was tested against each of the

three features separately; if any of the features indicated

the scan window to be a road area, it was deemed to be a road.

In the second method, called a Gaussian scan, all three

features were used together to decide whether the window was

a road area or an off-road area; in essence, the value of each

feature in the window added to the evidence until there was

enough evidence to determine whether a road or off-road area

was defined by the window. LT Sando concluded that the

Gaussian scan produced the better results. [Ref. 2:pp. 26-27]

Using LT Sando's proposition that building up the evidence

in favor of a conclusion produced more reliable results, the

program presented in this thesis first finds strong evidence

that two blocks (one from each image) are the same, based on

their having the same number of edges within them. Then it

attempts to confirm the hypothesis by comparing where the

edges lie within the blocks; if all the edges in one block are

in the same positions as all the edges in the other block, the

evidence is strong enough to claim that they are identical and

represent the same point on the earth's surface.

9

E. STATION KEEPING USING BOTTOM-TRACKING SONAR

LT Chet Hartley's thesis [Ref. 4] was an attempt to solve

the problem of detecting the motion of an Autonomous

Underwater Vehicle as it tried to maintain its position over

a particular spot of the ocean floor, a process known as

station-keeping. LT Hartley used acoustic signal data instead

of visual. He stored the results of bottom scans (depth

information) in arrays. Successive arrays were compared by

initially laying one on top of the other, center to center.

Next, the center three-cell by three-cell block (mask) in the

top image was compared to the center three-cell by three-cell

block (mask) in the bottom image by finding the difference

between the value of one of the nine cells in the top image

mask and the value of the corresponding cell in the bottom

image mask and then squaring the difference. Specifically,

(Dl(xi,yi) - (D2(xi,yi))2 (2.1)

where Dl is the top image and D2 is the bottom image, and i

refers to the corresponding cells in each of the three-cell

by three-cell masks. This was done for each pair of

corresponding cells in the two masks. He proposed that if the

formula produced the smallest square when applied to the

center cells of the two masks, those cells represented the

same spot on the ocean floor. Otherwise, the masks were

shifted and the comparisons repeated until the result of

10

applying the formula to the center cells of the masks was

smaller than the result of applying the formula to any other

corresponding cells. These two cells were considered to

represent the same spot on the ocean bottom; the distance and

the direction of the bottom mask's center cell from the bottom

array's center was the distance and direction that the

Autonomous Underwater Vehicle had moved between scans. [Ref.

4:pp. 44-49]

LT Hartley did not need to collect statistics about both

arrays. Instead he compared actual cells (depth data), the

equivalent of comparing gray levels to find a match between

two digitized images. He also started the comparisons at the

center of both arrays, a logical idea since his simulated

Autonomous Underwater Vehicle was centered over the spot

represented by the center array cells when the scans were

made. He never had to consider any but the center cells of

the top array, but in the worst case he might have to look at

all the cells in the bottom array. All in all, his technique

was efficient, each set of comparisons consisting only of

squaring the differences between nine pairs of values.

ji

p 11

III. DESCRIPTION OF APPLICATION

A. INTRODUCTION

Interpretation of aerial photographs came of age during

World War II, during which 80% of all military intelligence

was derived from aerial photographs [Ref. 5:p. 217]. Even

though more than forty years have passed, aerial-photograph

interpretation remains largely a manual task [Ref. 5:p. 219],

involving

... careful comparison of photo coverage over days, weeks,
and even months; use of stereo vision; measurement of
images to the tenth part of a millimeter with a high-power
magnifier fitted with a graticule; and above all, visual
imagination. [Ref. 6:p. 63]

To find the same point in two nearly identical photographs

taken at the same height involves placing one photo under one

eyepiece and the other under the second eyepiece and moving

the photographs until they produce a clear, stereo image.

Manual measurements can then be taken to determine how far the

camera moved between photographs. This thesis explores a

means of automating these procedures.

B. APPLICATION

The program presented in this thesis compares two aerial

photographs taken only moments apart so that both contain a

12

portion of the same scene; then it tries to detect exactly

where that portion appears in each in photograph and how far

that portion has shifted from its position in the first

photograph to its position in the second.

C. ASSUMPTIONS

The following assumptions were made:

The pictures analyzed have sufficient diversity in gray
levels for edges to appear; i.e., there should be several
places in the pictures where the square of the difference
between gray levels of adjacent pixels is significant.

The motion of the observer is in one plane only, a plane
parallel to the plane of the camera.

The light source provides the same amount of illumination
for two succeeding photographs, making it possible to use
the same threshold for both images. The threshold is the
quantity, between 0 and 1, with which the presence of
edges is detected; i.e., when the square of the
difference between the gray levels of adjacent pixels
equals or exceeds that quantity, an edge is present.

* The relatively small images enable sufficient enough
testing of the techniques to provide confidence that the
techniques could be used on larger images.

* No highly regular, repeated patterns appear in the
photographs; e.g., parking lots containing many cars.

No rotation of the picture frame occurs between the two
pictures.

D. SITUATION MODELED

The program presented in this thesis models the following

scenario: a photographic system aboard an aircraft takes two

successive photographs at a known height and a known amount

of time apart but close enough in time that both photographs

13

contain the same portion of ground. Digitized representations

of the two images are processed and compared, and the distance

traveled by the aircraft is determined by how far the portion

common to both images has shifted from its position in the

first image to its position in the second.

E. IMAGES USED

Figures III-I and 111-2 show the two 500 by 500 images

that were manipulated to produce the smaller (40 by 40) images

(also shown) that were used to test the program. The reduced

images covered the same areas as the 500 by 500 images, but

in less detail.

Obviously, Image lb cannot be compared to Image 2b since

they have no common ground. But, for testing purposes, each

image can be partitioned into a pair of images that can be

compared. The program used this idea to produce two images

to be compared from a single image.

14

Image la

Image lb

Figure III-1. First Image Used to Test Program.

15

Imge2

Image 2a

Figure 111-2. Second Image Used to Test Program.

16

IV. IMPLEMENTATION

A. INTRODUCTION

The program is written in Common LISP, in the Symbolics

dialect. It runs on a Symbolics LISP machine; in particular,

it was run on a Symbolics 3675 with five megabytes of memory,

a Symbolics 3650 with five megabytes of memory, and a

Symbolics 3640 with 1024 kilobytes of memory.

Like LT Hartley's program, this program tries to detect

the motion of an observer over some surface. Also like LT

Hartley's, it focuses attention on overlapping three-cell by

three-cell blocks. It uses a formula similar to formula 2.1

to find the gradient magnitude of each pixel in the images.

Like LT Sando's program, it tries to solve the problem

visually, as opposed to acoustically. Also like LT Sando's,

it creates the primal sketches by doing statistical analysis

over both images entirely and by starting its scans in the

upper left-hand corner of the images. However, the features

in the primal sketches were different from those in LT

Sando's.

17

B. PROGRAM INPUT

There are three inputs to the program:

* The name of the file that holds the forty-pixel by forty-
pixel image that represents the "first" photograph taken
by the observer.

* The name of a file if the user wants the screen output
stored to a file.

* The user-chosen x-y coordinate that defines the upper
left-hand corner of the subimage that represents the
"second" photograph taken by the observer.

Note that the "second image is actually implemented as a part

of the "first" image for test purposes but will not be in a

real application. From here forward, the "first" image will

be referred to as the original image (orig-image in the

program itself) and the "second" image as the subimage.

Instead of underwater images as in LT Hartley's thesis,

this thesis used aerial photographs of different parts of Fort

Hunter-Liggett, California. Each photograph was digitized

into a 500 by 500 image and stored in an image file. Because

processing a 500 by 500 image could be unnecessarily

time-consuming for test purposes, the files were further

reduced to forty by forty image files by keeping every twelfth

column and row of the digitized images, resulting in images

that are lower-resolution, miniature versions of the original

500 by 500 images. Each reduced image was placed in its own

file that could be used by the program. A single file was

used to produce the two images compared by the program. The

18

second image was some twenty-pixel-by-twenty-pixel section of

the file while the first image was the entire file. The

program processes the first and second images, extracting

statistical information about all possible three-by-three

blocks in the images. The program uses the statistics to find

pairs of statistically similar blocks in both pictures. The

difference between the indices into the statistical arrays for

these blocks yields the offset of the upper left-hand corner

of the second image from the upper left-hand corner of the

first image.

C. PROGRAM OUTPUT

The output of the program is the registration of the upper

left-hand corner of the subimage within the original image.

D. MAJOR INTERACTIONS

Figure IV-I is a block diagram that shows the main

interactions within my program.

The major high-level function--process images--first calls

all the preprocessing functions--those that do the statistical

analyses of the images and store the information in various

arrays. Function calculate_gradient produces a gradient array

for the original image and one for the subimage. Function

selectthreshold uses these gradient arrays to select the

threshold to be used on both images. Using the threshold,

19

Kr)

UU

1 01 4-'

0) £
If, 0- ->-

CT))

Qr nC) -u0 E:Q
1fl

0
1) -C

Q)) 0)± _jC- .

a 0

0 - I

-0 Cu TA >1 (1

0:T)> E Ll Cu
i~C 3L 71Li:3 110 0 LA

I~ I: L

4-14

0O0

0 C:

L

"'0

0 -4-,

0)Rod0

'r74 0 _5>
C +C d -U-- d

LL -0 0 U a

Uu

Figure IV-1. Block Diagram of main Program interactions.

20

calculatenum-edges_anduniqueindexnumbers produces a num-

edges-array and unique-index-number array for each image.

Next, processimages calls the primary functions, those

that do the comparisons and list processing that result in

finding the registration of the subimage within the original

image. Function make-edge-list puts into list form certain

indices into certain arrays. Function findmatch sends these

lists to find likely_match. If findlikely_match finds a

possible match in these lists, it calls compare_unique_

indexnumbers, which looks for even stronger evidence that the

possible match is a likely match. If that stronger evidence

is found, find-match calls checkresults; if it is not,

findmatch prints a message that says that there were no

matches in the edge lists.

E. FUNCTIONS WRITTEN BY OTHERS

All the functions used to display the images on the

graphics screen were written by CPT Jim Zanoli, U. S. Army.

" makecolorwindow produces a window labeled "IMAGE
ANALYSIS" on the graphics screen when the program is
loaded.

" make blue window makes blue the window produced by
make colortindow.

" colorpixel is an I/O function that sends the
Red-Green-Blue (RGB) values to a specific pixel on the
graphics screen. For the purposes of this thesis, the
RGB values of each pixel are the same, creating gray
levels that match the gray levels in the black and white
digitized image.

21

displayimage can be used to display the image once it
is stored in an array.

F. DATA STRUCTURES

Lists and arrays are used in this thesis. LISP is

particularly adept at handling and manipulating lists; they

are LISP's natural data structure. Arrays are the logical

structure for handling image data.

There are seven major arrays used in the program:

" *orig-image-array* is an n by n array that holds the gray
level values of the original image. To save memory, part
of it also acts as the virtual array that holds the gray
levels of the subimage. When the program needs to access
the subimage in order to create the
subimage-gradient-array, it is actually accessing that
part of the *orig-image-array* that is the subimage.
This is the only time that the program uses the otherwise
privileged information as to where the subimage lies
within the original image; the artificiality of using the
orig-image-array as the subimage's virtual image array
makes this disclosure necessary. It enters the *orig-
image-array* at the upper left-hand corner of the
subimage (the coordinates of that point are an input to
the program) and processes only those pixels that make
up the subimage.

" *orig-image-gradient-array* is an n-i by n-i array that
stores the results of finding the gradient magnitude of
each pixel in the original image.

* orig-image-num-edges-array* is an n-3 by n-3 array that
holds the number of edges found in each overlapping
three-cell by three-cell block into which the
orig-image-gradient-array is virtually divided. Every
orig-image-gradient-array cell that has at least two
neighbors to its right and at least two neighbors to its
left is the upper left-hand corner of a three-cell by
three-cell block; therefore, in an n by n image, there
are ((n-3) * (n-3)) such blocks. The blocks into which
the *orig-image-gradient-array* and its corresponding
subimage-gradient-array are divided are the units about
which statistics are gathered and comparisons are made.

22

orig-image-index-array is an n-3 by n-3 array that
stores the unique numbers representing the three-cell by
three-cell blocks into which the
orig-image-gradient-array is virtually divided. The
formula used to compute these unique numbers is described
in the section entitled PROGRAM COMPONENTS.

* subimage-gradient-array* is a k-i by k-l array that
holds the results of finding the gradient of each pixel
in the subimage, like the array
orig-image-gradient-array above. k is the length of
one side of the subimage.

* *subimage-nwm-edges-array* is a k-3 by k-3 array for the
subimage, like the array *orig-image-num-edges-array*
above.

" *subimage-index-array* is a k-3 by k-3 array for the
subimage, like the array *orig-image-index-array* above.

The program uses four main lists:

. *orig-image-five-edge-list* is a list of the subscripts
into *orig-image-num-edges-array* whose cells indexed by
the subscripts yield the number five. These cells
represent the three-cell by three-cell blocks of the
orig-image-gradient-array that have five edges after
the threshold is applied.

orig-image-six-edge-list is similar to the list
orig-image-five-edge-list, except for six-edge cells.

subimage-five-edge-list is like the list
orig-image-five-edge-list, except for the subimage.

subimage-six-edges-list is like the list
orig-image-six-edge-list, except for the subimage.

G. PROGRAM COMPONENTS

The program is divided into the major sections shown in

the block diagram of Figure IV-I. In addition, there are

several miscellaneous functions that serve to support the user

23

in better understanding what the program is doing. These

functions are found at the very end of the program.

1. Initializing Functions

Five small functions are in this section. Three,

described below, must be called by the user--makeimage

array, initialize, and setup. The function setup calls

makesubimage, and make imagearray calls the function

read-file.

* make image_array reads the image file with the help of
the function read file and stores the gray level values
in *orig-image-array*.

* initialize initializes the various global variables used
in the program.

* setup calls makesubimage to assign values to
subimage-x and *subimage-y* and to make sure that a
subimage that starts at the point defined by *subimage-x*
and *subimage-y* fits entirely within the original image.
This error-checking facility ensures that the virtual
subimage is completely inside the original image so that
the array subscripts of the virtual subimage will never
be out of bounds of the *orig-image-array*.

2. Preprocessing Functions

These functions carry out the statistical analysis of

the original image and of the subimage. This statistical

analysis enables the program to find statistically interesting

parts of the images to process and compare. Comparing the two

images pixel by pixel is thereby avoided; the program only

compares small sections of the images instead. The arrays

created by these functions are then processed and compared by

the primary functions, while the original image and the

24

subimage are never looked at again. In fact, the only function

that actually scans the images is calculate gradient.

Figures IV-2 through IV-5 are the arrays that hold the

statistical information about the subimage taken from Image

1 when *subimage-x* is 5 and *subimage-y* is 10 (i.e., the

subimage's upper left-hand corner is at the intersection of

the sixth column and eleventh row of the origindl image when

the first row and first column are numbered zero as is the

convention in computer science). The threshold above which

the difference squared amongst three neighboring pixels

produces an edge is .35. The functions that produce the

arrays and select the threshold are:

calculate_gradient (size x y gradient-array)--scanning
the *orig-image-array*, calculates the gradient magnitude
for each cell in the *orig-image-array* starting at the
array cell indexed by x and y. The formula used is the
sum of the square of the differences between the gray
level of a pixel and two of its neighbors:

sqrt[(Pi,j - Pi+l,j) 2 + (Pi,j - Pi,j-l)2] (4.1)
where i and j take on the values of zero to the number
of pixels minus one in a row or column (n-1 or k-1, as
appropriate). Size is the length of a side of the
original image (n) or the length of a side of the
subimage (k). x and y are both zero if the image being
processed is the original image; x is *subimage-x* and
y is *subimage-y* if the image being processed is the
subimage. See Figure IV-2.

select threshold--this function selects the threshold
that produces as near to m five-edge blocks in the
subimage as possible, where m is 2.5% of the total number
of pixels in the subimage. It tries increments of .1
until it finds two successive thresholds, one of which
produces less than m five-edge blocks and the other more
than m five-edge blocks. Minor interpolation is done to
fine-tune the threshold as much as possible. The
resulting threshold is used to preprocess both the
subimage and the original image. This function calls

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

.02 .05 .22 .52 .12 .00 .00 .01 .00 .01 .01 .00 .01 .01 .01 .02 .01 .01

.03 .04 .31 .35 .33 .00 .01 .01 .00 .00 .00 .01 .01 .01 .00 .01 .01 .01

.07 .03 .30 .05 .54 .21 .02 .00 .00 .01 .01 .00 .00 .01 .01 .01 .02 .01

.05 .08 .33 .25 .53 .60 .52 .01 .01 .01 .01 .00 .01 .01 .01 .00 .01 .00

.11 .16 .26 .27 .09 .25 .54 .02 .01 .00 .00 .00 .01 .00 .01 .01 .01 .00

.23 .18 .32 .38 .62 .71 .93 .03 .01 .00 .00 .00 .00 .00 .00 .01 .01 .01

.43 .49 .67 .09 .12 .04 .07 .00 .00 .00 .00 .00 .01 .00 .01 .00 .00 .01

.16 .65 .24 .20 .01 .00 .01 .00 .00 .00 .00 .01 .01 .01 .00 .00 .01 .00

.45 .26 .36 .08 .00 .01 .01 .01 .01 .00 .00 .00 .01 .01 .00 .01 .00 .00

.38 .24 .39 .20 .06 .04 .01 .01 .01 .01 .01 .02 .03 .02 .02 .01 .01 .01

.59 .30 .35 .57 .73 .69 .73 .76 .67 .51 .43 .65 .77 .74 .69 .71 .63 .40

.25 .11 .08 .04 .12 .18 .13 .13 .23 .19 .29 .24 .23 .06 .10 .11 .24 .36

.32 .22 .01 .06 .02 .12 .19 .17 .17 .52 .28 .14 .20 .14 .16 .11 .20 .24

.40 .45 .53 .30 .25 .35 .33 .43 .53 .47 .61 .16 .20 .26 .18 .26 .39 .06

.08 .08 .30 .32 .33 .29 .17 .19 .38 .38 .30 .12 .11 .08 .44 .31 .44 .23

.06 .14 .11 .12 .28 .14 .19 .09 .04 .60 .04 .14 .07 .73 .34 .01 .21 .13

.14 .08 .11 .14 .11 .04 .31 .42 .52 .27 .12 .04 .61 .04 .27 .18 .05 .15

.21 .34 .39 .40 .52 .61 .24 .12 .22 .11 .27 .26 .44 .27 .21 .18 .26 .35

.31 .15 .08 .16 .10 .37 .39 .08 .09 .50 .32 .13 .12 .18 .26 .26 .29 .15

Figure IV-2. *subimage-gradient-array* for Image 1.

26

0 1 1 0 1 2 0 2' 22

0 1 0 3 4 5 0 2' 0
1 0 0 6 7 8 26 0 0

a. a three-cell b. ordinal values c. values of
by three-cell block of each cell the cells

2' + 22 + 24 + 25 = 86

d. computation of the value assigned this
block and stored in the image's index-array

Figure IV-3. Computing the Unique Index Value of a Nine-Cell
Block.

functions make edgehistogram and
calculatenumedges_andunique_indexnumbers.

calculate num edges_ and unique_ index numbers
(gradient-array size threshold unique-index-num-array
num-edges-array)--this function produces two arrays for
each image. For the original image, it produces
* orig- image- index- array* and
orig-image-num-edges-array. For the subimage, it
produces *subimage-index-array* and
subimage-num-edges-array. Starting at the upper
left-hand corner of the appropriate gradient array, the
function logically divides the gradient array into
overlapping three-cell by three-cell block. Each cell
in the two arrays produced by this function is the upper
left-hand corner of some three-cell by three-cell block
in one of the gradient arrays. Those cells in the block
whose values exceed those of the threshold are flagged
as edges. The number of edges in each three-cell by
three-cell block is stored in the appropriate
num-edges-array, indexed by the same indices as those
that define the gradient array cell in the upper
left-hand corner of the block. See Figure IV-4.
Simultaneously, each edge cell in each three-cell by
three-cell block is assigned a value of 2 raised to some
power; then the values of each cell in the nine-cell
block are added together, giving the block a unique value

27

(Figure IV-3). The values for these blocks are stored
in the appropriate index array (Figure IV-5).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 3 4 3 4 3 3 3 3 3 3 3 3 3 3
1 0 1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3
2 0 0 1 2 3 2 1 0 0 1 2 4 4 3 1 0 0
3 0 0 1 2 3 2 1 0 0 1 3 6 6 4 1 0 1
4 0 0 1 2 3 2 1 0 0 1 3 6 6 4 1 1 2
5 0 0 0 0 0 0 0 0 0 1 3 5 4 2 1 2 3
6 0 0 0 0 1 2 3 3 2 2 2 3 2 1 2 3 3
7 3 3 2 1 1 2 3 4 4 4 3 3 2 1 2 2 2
8 3 3 2 1 1 2 3 4 4 3 2 2 2 1 1 1 1
9 3 3 2 1 0 0 0 1 2 3 4 4 3 1 0 0 0
10 0 0 0 0 0 0 0 0 1 3 5 4 2 0 0 0 0
11 0 0 0 0 0 0 0 1 3 5 5 3 1 0 0 0 0
12 0 0 0 0 0 1 2 4 5 5 3 1 0 0 0 0 0
13 0 0 0 0 1 2 4 5 5 3 1 0 0 0 0 0 0
14 1 2 3 2 2 2 4 4 3 1 0 0 0 0 0 0 0
15 2 3 3 2 2 1 3 2 2 0 0 0 0 0 0 0 0
16 2 3 3 2 1 0 2 2 2 0 0 0 0 0 0 0 0

Figure IV-4. *subimage-num-edges-array* for Image 1.

make histogram (num-edges-array size)--function
make_-histogram is called by function select threshold to
find out how many five-edge blocks there are in the
gradient array of the image in question. The output is
a list whose values represent the total number of 0, 1,
2, 3, 4, 5, 6, 7, 8, and 9 edges found in the three-cell
by three-cell blocks into which the gradient array of the
image in question is divided. For example, the output
might look like this for the original image:

(475 215 208 230 149 66 20 6 0 0)
In this case, the original image has 475 blocks with zero
edges in them, 208 with two edges, and 66 blocks with
five edges. Computing the total number of blocks with
particular numbers of edges in them indicates how many
blocks hold the number of edges of statistical interest.
The threshold dictates how many edges appear in a
particular block; by knowing the total number of
five-edge blocks that a threshold produces, the threshold
can be adjusted to produce the desired number of
five-edge blocks.

28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 2 33 52 26 45 50 57 56 56 56 56 56 56 56 56 56 56

1 0 4 6 3 5 6 7 7 7 7 7 263 135 71 7 7 7

2 0 0 256 384 448 192 64 0 0 256 384 480 464 200 64 0 0

3 0 0 32 48 56 24 8 0 0 32 304 444 250 89 8 0 256

4 0 0 4 6 7 3 1 0 0 4 38 311 159 75 1 256 160

5 0 0 0 0 0 0 0 0 0 256 388 230 83 9 256 160 84

6 0 0 0 0 256 384 448 448 192 96 48 28 10 1 288 148 74

7 448 448 192 64 32 48 56 312 408 204 70 259 129 64 36 18 9

8 56 56 24 8 4 6 7 39 51 25 264 160 80 8 4 2 1

9 7 7 3 1 0 0 0 4 6 259 417 212 74 1 0 0 0

10 0 0 0 0 0 0 0 0 256 416 244 90 9 0 0 0 0

11 0 0 0 0 0 0 0 256 416 244 94 11 1 0 0 0 0

12 0 0 0 0 0 256 384 480 244 94 11 1 0 0 0 0 0

13 0 0 0 0 256 160 368 188 94 11 1 0 0 0 0 0 0

14 256 384 448 192 96 20 46 23 11 1 0 0 0 0 0 0 0

15 160 112 556 24 12 2 261 130 65 0 0 0 0 0 0 0 0

16 20 14 7 3 1 0 288 144 72 0 0 0 0 0 0 0 0

Figure IV-5. *subimage-index-array* for Image 1.

3. Primary High-Level Function

This section contains only one function--

processimages. It calls most of the functions in the program

and produces status output as various functions are executing.

4. Primary Functions

Eight functions make up this section of my program.

One of the functions calls three of the eight functions,

29

acting as the outer of three loops in the process. The

functions are:

* make_edge list (num-edges-array num-edges size)--this
function returns a list of certain indices into the
num-edges-array. These indices are the ones whose cells
hold the num-edges in question (in this thesis, num-edges
is either five or six). As discussed before, the cells
of the num-edges-array represent the three-cell by
three-cell blocks that have five or six edges in the
appropriate gradient array.

" find match (subimage-edge-list orig-image-edge-list num-
edges)--the high-level function process_images passes
control to this function, which calls find likelymatch
first to look for a match between the two images and then
function check results to check to see if the match has
been correctly found.

" find likelymatch (subimage-edge-list orig-image-
edge-list)--The outer of three nested loops, this
function loops through the orig-image-edge-list calling
function secondloop until it finds a pattern in the
orig-image-edge-list that matches the pattern in the
subimage-edge-list or until it runs out of elements in
the orig-image-edge-list. The subimage pattern is found
by subtracting each pair of indices in the
subimage-edge-list from the first pair of indices in the
subimage-edge-list. This same pattern is looked for
within the orig-image-edge-list. Note that the pattern
is based on the first pair of indices in the
subimage-edge-list and on some pair of indices in the
orig-image-edge-list. Figure IV-6 shows graphically what
a matching pattern looks like in the
subimage-num-edges-array and the
orig-image-num-edges-array. If a matching pattern is
found, find likelymatch calls the function
compare unique index numbers, which tries to find more
evidence that a good match has been found. If a good
match has been found, find likelymatch returns a list
of the two pairs of indices (one from each edge-list)
that produced the matching patterns. If a good match has
not been found, findlikely_match continues to loop
through orig-image-edge-list looking for another possible
match.

* secondloop (subimage-pattern orig-image-edge-list
orig-image-pattern orig-key-x orig-key-y)--The middle of
three nested loops, second loop loops through the
subimage-pattern calling third loop until it has looped

30

12334343333333333 3422000000333000000000000000000000000
01222233333444333 3322100000233100000000000000000000000
00123210012443100 1122211100134431000000000000000000000
00123210013664101 1132222200023532000000000000000000000
00123210013664112 1121122200135753000000000000000000000
00000000013542123 2110134433333432000000000000000000000
00001233222321233 2000123344433321000000000000000000000
33211234443321222 3110135666420000000000000000000000000
33211234432221111 2110123445320000000000000000000000000
33210001234431000 1110124656453333333333333210001233333
00000000135420000 0000112334343333333333334331223333333
00000001355310000 1000001222233333444333334332333333211
00000124553100000 1000000123210012443100012222332100001
00001245531000000 1000000123210013664101132201110000001
12322244310000000 0000000123210013664112232200122100000
23322132200000000 0000000000000013542123221100122100001
23321022200000000 0000000001233222321233100000245310001

2333333211234443321222000000123211111
*subimage-num- 3433333211234432221111000111123211110

edges-array* 3555433210001234431000000111000112110
1222100000000135420000001343101343111
0133200000001355310000001233211343123
1011100000124553100000002454211232134
2011100001245531000000012322110000034
4100012322244310000000012321012210022
4200123322132200000000011211012321122
5311223321022200000000000111012321111
6421211000033300000000001222110111111
5321100000022200000000001122210001221

4320000000012210000000001122221101221
3320000000001110000000111011112211332
3320111000002220000000112221013332433
2321111000013320000011212332002343434

1332111000025530000011213553001233334
1343100000024420000011223443100111123
1354200000012210000000123443100001343
0255300000000000000001122443101122433

orig-image-num-edges-array

Figure IV-6. Matching Patterns of Five-Edge Blocks (in
Bold Type).

31

completely through subimage-pattern or until it has
exhausted the possibility of finding a matching pattern
in the version of the orig-image-edge-list that it is
working with.

thirdloop (orig-image-edge-list orig-key-x orig-key-y
orig-delta-x orig-delta-y sub-delta-x sub-delta-y)--The
innermost of the three loops, third loop loops through
yet another version of the orig-image-edge-list until it
finds a pair of indices (orig-delta-x and orig-delta-y)
in the list that, when subtracted from orig-key-x and
orig-key-y (a pair of indices peeled off the front
orig-image-edge-list by findlikelymatch), produce the
same values as sub-delta-x and sub-delta-y (a pair of
numbers in the subinage-pattern) or until all pairs of
indices in orig-image-edge-list have been examined. If
there is a match, third loop returns a list made up of
orig-delta-x and orig-delta-y. If there is no match, it
returns an empty list.

findpattern (edge-list listlength)--An auxiliary
function, findpattern finds a pattern that exists in
edge-list. The pattern that it finds is the absolute
value difference between the first pair of numbers in the
list and every other pair of numbers in the list. For
example, if the edge-list were:

(1 2 5 6 3 8 7 9)
then the pattern would be found as follows:

1 2 1 2 1 2
-5 -6 -3 -8 -7 -9

4 4 2 6 6 7

and the resulting pattern would be:
(4 4 2 6 6 7)

compare uniqueindex numbers (sub-image-x sub-image-y
orig-image-x orig-image-y) --This function looks for more
evidence that the possible match is the correct match.
It simply compares the value of *subimage-index-array*
as indexed by sub-image-x and sub-image-y with the value
of *orig-image-index-array* as indexed by orig-image-x
and orig-image-y. If the values are the same, it returns
a list whose contents are sub-image-x, sub-image-y,
orig-image-x, and orig-image-y. If they are not the
same, it returns nil. The function is called by function
find_likely_match.

32

check-results (likely-match num-edges)--Called by
function find match, checkresults does just that--
checks to see if the match found by find match is indeed
the correct match. This function will work only when the
subimage is taken from the original image and therefore
cannot be used in real applications.

5. Display Functions

The four functions in this portion of the program

display the original image on the graphics screen. See

section E for a more complete description of these functions.

6. Miscellaneous Functions

Two functions print arrays so that the user can

inspect their contents easily; taking certain lists that the

program sees as lists of independent elements but that are

logically lists of pairs, two of the functions print these

lists in their logical form for the benefit of the user; and

two open and close the optional output file.

• printarray (array-name size start-x start-y)--This
prints the contents of a square array onto the screen.

0 printarrayfile (array-name size start-x start-y
filename)--Like print_array except that the output goes
to a file instead of to the screen.

print pairedlist (list-name)--This prints to the screen
a list, such as (1 2 3 4), whose contents are logical
pairs, as ((1 2)(3 4)), so that the user can better
understand the list.

* printpaired listtooutput_file (list-name)--Like
function does the same as printpaired_list except that
the output goes to the optional output file of the
program.

open output_file (filename)--This enables the user to
store the output of the program to a file.

33

* closeoutputfile (filename)--This closes the option
output file opened by openoutput file.

H. ERROR CHECKING AND USER FRIENDLINESS

1. Error Checking

The only error checking done by the program is to make

sure that the point in the original image chosen by the user

to be the upper left-hand corner of the subimage will give a

virtual subimage entirely inside the original image.

2. User Friendliness

The program was designed so that the user would have

to call only a minimum number of functions manually. Status

messages let the user know what processing is being done, so

that the user is not staring at a blank screen wondering if

anything is happening. The program also produces intermediate

results that assist the user in analyzing the results of the

run. Lastly, names and function names that made sense were

used, and an attempt was made to write clear documentation for

each function.

I. DIFFICULTIES WITH THRESHOLD

The thorniest problem in this thesis is that of finding

a good threshold for the images. Without a good threshold,

either too few or too many edges are produced, and either no

matches are found or the system stack overflows during the

list processing loops. Unfortunately, as can be seen in

34

Figures IV-7 and IV-8, the function relating the threshold to

the number of five-edge cells is not monotonically increasing.

This is because we are not looking simply at edges but at

overlapping groups of edges found in the three-cell by

three-cell blocks into which the two gradient arrays were

logically divided. Since it was not possible easily to

predict the behavior of the threshold, the only alternative

was to limit the number of thresholds tested and pick the one

that produced the best number of five-edge blocks in the

subimage gradient array. In a real application, the goal

would be to find the threshold that produces the best number

of five-edge blocks in both images. The smaller the number

of five-edge blocks, the faster the program runs; ideally, the

number should be no more than 2.5% of the total number of

pixels in the image. Better approaches remain a matter for

future research.

35

300-

20D- *(.15)

100 .25

90-

70-

60-

50-

*(01) *(.06)

*.05)
30-

20-

*(.04)

0,05 0.1 0.15 0.2 0.25 0.3

Figure IV-7.- Difficulty in Selecting Threshold for Image 2.

36

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 3 4 3 4 3 3 3 3 3 3 3 3 3 3
1 0 1 2 2 2 2 3 3 3 3 3 4 4 4 3 3 3
2 0 0 1 2 3 2 1 0 0 1 2 4 4 3 1 0 0
3 0 0 1 2 3 2 1 0 0 1 3 6 6 4 1 0 1
4 0 0 1 2 3 2 1 0 0 1 3 6 6 4 1 1 2
5 0 0 0 0 0 0 0 0 0 1 3 5 4 2 1 2 3
6 0 0 0 0 1 2 3 3 2 2 2 3 2 1 2 3 3
7 3 3 2 1 1 2 3 4 4 4 3 3 2 1 2 2 2
8 3 3 2 1 1 2 3 4 4 3 2 2 2 1 1 1 1

a. Partial *subimage-nua-edges-array* with *subimage-threshold* of .35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 4 4 5 6 7 6 5 4 3 3 4 4 5 5 6 5 4
1 4 6 7 7 6 4 3 3 3 3 4 5 7 7 8 6 5
2 3 4 5 6 6 4 3 3 3 3 4 5 7 6 6 4 3
3 3 4 4 5 6 6 6 6 5 4 4 6 8 6 4 2 3
4 1 1 1 2 4 5 7 7 6 4 4 6 7 5 2 2 4
5 0 0 0 0 1 2 4 4 4 3 4 6 6 4 2 2 5
6 0 1 2 3 3 3 4 4 5 4 5 5 5 3 3 5 7
7 3 4 5 5 4 3 3 4 6 6 6 5 6 5 5 4 5
8 5 6 6 7 5 5 5 6 7 5 5 4 6 5 4 3 4

b. Partial *subimage-num-edges-array* with *subimage-threshold* of .2

Figure IV-8. Effect of Threshold on Edges.

37

V. RESULTS
A. INTRODUCTION

The program produced better results than was thought

possible. As can be seen in Figure V-l, as few as two pairs

of indices in the *subimage-five-edge-list* or the *subimage-

six-edge-list* were sufficient for the program to find the

correct location of the subimage within the original image.

It had been anticipated that possibly as many as five such

pairs would be needed before the program could identify the

registration of the subimage.

B. EXPERIMENTAL PROCEDURES

Two black and white photographs digitized to two 500 by

500 images were the basis for the experiments that were run

with the program. The original photographs can be seen in

their digitized form in Figures III-1 and 111-2. Both of

these images were reduced to forty by forty images and placed

in files. Both Image 1 and Image 2 contain roads, trees,

bushes, low ground cover, varying shades of dirt, and angles

cause by meeting roads or borders. In addition, Image 1

contains a reservoir. Good representatives of relatively arid

lands, both contain areas of relatively sharp distinction

between light and dark. Such sharp distinctions may not be

visible in heavily wooded areas or in flat, cultivated areas.

38

Number of Number of
5-edge blocks 6-edge blocks

Threshold *auimae-x* *eubimxe-y* Result in subimage in subima~e

Image 1

35 10 20 match 8 0
.35 10 10 match 8 0
.3 8 17 match 9 0
.3 0 8 match 14 4
.3 18 18 match 3 0

Image 2

.2 5 5 match 2 0

.175 3 8 match 8 3

.175 13 13 no match 0 0
.15 8 3 match 19 4
.15 20 0 match 33 19

Figure V-1. Sample Results of Running the Program Without
Function select-function.

With both image files, experiments were conducted with

histograms, manually choosing thresholds until fairly good

thresholds for each image was found. Figure IV-8 shows some

of the thresholds tried and the effect they had on the number

of five-edge blocks found in one of the images.

After workable thresholds were found, the program was run

eighteen times on each image, using various thresholds and

values for *subimage-x* and *subimage-y*. Figure V-1 shows

representative results of these runs. Appendix B shows

complete results of these tests.

Based on the results of the threshold work and of the test

runs of the program, function selectthreshold was written

automatically to choose the threshold for the run based on the

number of five-edge blocks the threshold produces in the

subimage-gradient-array. To test the program at this point,

it was run on both images using every possible *subimage-x*

39

and *subimage-y* value. The program produced correct results

on all 800 tests conducted, thus fully proving the correctness

of the program for these two images. Appendix B shows the

results of twenty of these tests.

C. AVERAGE CPU TIMES

The tests which were run before function select-threshold

was added were done on three different Symbolics computers,

each one with different amounts of memory and different

processing speeds. On the Symbolics 3675, with five megabytes

of memory, it took an average of 70 seconds to run the

program. The Symbolics 3640, with 1024 kilobytes of memory,

ran the program in an average of 145 seconds, while the

Symbolics 3650 with five megabytes of memory ran the program

on the average in 85 seconds. Adding function

selectthreshold slowed the runs considerably. For instance,

it took an average of 160.6 seconds to run the program on the

Symbolics 3675.

A few things increased unnecessarily the CPU time needed

to run the program. The program experiments with both five-

and six-edge blocks to see if one has an advantage over the

other. A real system would need only to use one or the other

kind. Function select-threshold selects a threshold based on

the number of five-edge blocks produced; this sometimes has

the side effect of producing a large number of six-edge

40

blocks, which in turns adds to the processing time. A real

system could avoid the extra processing by only processing one

kind of block. Lastly, picking the threshold based on the

number of five-edge blocks produced in the *subimage-num-

edges-array* sometimes produces excessive number of five-edge

blocks in the *orig-image-num-edges-array*; thus, the

artificiality of extracting the smaller subimage from within

the original image caused disproportionate numbers of

five-edge blocks in the original image. This would not occur

with a real vision system, since it would compare two entirely

separate and equally-sized images; most likely, the threshold

chosen for one such image would produce a reasonable number

of edge blocks in both.

Another way to speed up the program is to use parallel

processing, particularly for the functions that cost the most

in CPU time. Function calculate_numedges_andunique_

index-values is a good candidate for parallel processing.

What makes the function time-consuming is that it explores

every possible three-cell by three-cell block in the

appropriate gradient array; splitting the gradient array into,

say, four pieces and assigning each piece to a separate

processor to explore its three-cell by three-cell blocks would

probably speed up the function significantly. Function

select-threshold is another function whose CPU timie could be

reduced by parallel processing. This function is time

41

consuming because it calls functions calculatenumedges

and_uniqueindexnumbers and makehistogram for every

threshold it considers; to speed up the processing, the

thresholds to explore could be divided amongst the processors

available and the results compared later.

D. ACCURACY OF THE RESULTS

The program correctly found the registration of the

subimage within the original image in 100% of the runs in

which more than one pair of indices were in either the

subimage-five-edge-list or in the *subimage-six-edge-list*.

In the runs in which there was one or zero pairs of indices

in the subimage edge lists, the program correctly determined

that it could not proceed. After the function

selectthreshold was added to the program, there were always

more than one pair of indices at least in the

subimage-five-edge-list.

42

VI. CONCLUSIONS

A. MAJOR ACHIEVEMENTS

The program accurately located the same point in two

images without comparing the images' gray levels pixel by

pixel. It found the point by comparing the statistics about

a few interesting points in each image.

The program demonstrated the practicability of adopting

its techniques for picture registration determination. These

techniques are:

* Computing the gradient for each pixel in the image.

• Logically dividing the gradient array into overlapping
nine-cell blocks.

Gathering statistics about the overlapping nine-cell
blocks, specifically, the number of edges in each block
and the position of those edges within the block.

Studying only those blocks that contain an interesting
number of edges--in the case of my thesis, those
containing five and six edges.

Looking for a pattern of five-edge blocks or six-edge
blocks in the original image's num-edges-array that
matches the pattern of five-edge blocks or six-edge
blocks in the subimage's num-edges-array. This gives
strong evidence that the first five- or six-edge block
in each pattern represents the same point.

Adding more evidence that the blocks found in the
preceding paragraph represent the same point by seeing
if the edges in those blocks are also in matching
positions inside the blocks.

43

B. WEAKNESSES

Two of the functions take the lion's share of the

processing time required to run the program. These are

selectthreshold and calculatenumedges_and_uniqueindex_

numbers, which may be called by selectthreshold several times

before a final threshold is chosen. Even on the fastest of

the Symbolics computers available to me, calculatenum_edges_

and_unique index numbers takes one minute of CPU time to

process a forty by forty array.

The looping functions find likelymatch and second loop

do some redundant calculations in order to preserve the loop

integrity. A clever algorithm needs to be written to avoLd

the redundancy. This program takes into account changes in

height of the observer but not rotational movement of the

observer. Rotational movement of the observer should be

addressed by future thesis work.

C. OTHER CONCLUSIONS

The threshold should be the same for both images compared

in a run of the program. If this is not the case, edges will

not necessarily appear in identical spots in the two images

and certainly not in the same patterns within identical

nine-cell blocks. Finding the same spot in two images without

some of the edges in identical places in the two images would

be impossible using these techniques. Certainly, the

44

threshold will need to change to accommodate changing

visibility.

Focusing the attention of this program on the nine-cell

blocks that contained five and six edges is somewhat

arbitrary. The program showed that either one of these types

of blocks produces resul.s if the threshold produces enough,

but not too many, such blocks. Looking for both five-edges

blocks and six-edge blocks is redundant and would not be

needed in a practical application. These were chosen as the

focus of the program because they appeared statistically

interesting after some preliminary histogram work. However,

three-edge blocks and seven-edge blocks are likely to be as

eligible for use as the five- and six- edge blocks were. In

fact, one possible way to reduce the time it takes to choose

a threshold is to hold the threshold constant and select the

number of edges of interest instead of selecting a threshold.

Testing this technique on two photographs taken moments

apart remains to be done. This was not done during this study

because such photographs were not readily available. Using

successive photographs presents five problems: rotation of

the observer, translation of the observer, changes in the

height of the observer, changes in perspective ch to the

observer's translation, and changes in light. The first

problem is not solved by the technique as presented in this

thesis; however, it is possible that enlarging the size of the

45

blocks studied would ensure that some edges common in both

images would appear in corresponding blocks in the two images

and in the same relative positions within those blocks.

Further research is needed into this area. The second and

third problems can be handled by the program as it is

currently written. As to the changes in perspective due to

the translation of the observer, it is unlikely that the

perfect results obtained in these experiments could be

duplicated using two successive images; their common terrain

will certainly look different to the computer, however

slightly, because of the change in angle from the observer to

the terrain as the observer traveled over it. As shown by the

results of the experiments conducted in this study, it takes

only a small number of common nine-cell blocks to appear the

same in both images in order to obtain a match. Therefore, if

only a few blocks in each image look the same to the computer,

a match could be found; but whether even a few would appear

the same in both primal sketches remains the work of future

experiments. Changes in light is the last problem presented

by analyzing two images taken at different times. The

program's automatic threshold-selection function needs to be

modified to choose a separate threshold for each image if

there is a change in light. Acquiring a satisfactory

threshold for each image does not guarantee that the

thresholds will produce identical nine-cell blocks throughout

46

the two images; however, it should produce enough to find a

match. Verifying this hypothesis remains the work of future

experiments.

D. SUMMARY

The results of this thesis show that the techniques

explored can be used successfully in photo interpretation,

especially for motion detection. The techniques work very

well on the reduced versions of Image 1 and Image 2, implying

that they can be applied successfully to aerial photographs

that do not contain highly regular, repeated patterns. They

may work equally well on photographs that do contain such

patterns, but that type of photograph was not available for

testing. The techniques would certainly produce good results

with any photograph that has sufficient changes in gray levels

from pixel to pixel to produce detectable edges, including

such photographs of the ocean bottom.

47

APPENDIX A

PROGRAM

A. CONVENTIONS USED

Throughout the program, the reader will find three

typographical cues. The use of asterisks at the beginning and

end of an expression signals a global variable (e.g.,

subimage-index-array). Local variables (e.g., hum-edges)

and global variables have hyphens, while underscores within

an expression and verbs identify a function name (e.g.,

calculatenum edgesanduniqueindexnumbers and initialize).

B. PROGRAM

The program is intended to be used in conjunction with a

graphics terminal so that the user can display the images

being processed. In order to use the program on a Symbolics

machine that has no graphics terminal attached, the user must

delete two of the display functions--makecolorwindow and

makebluewindow--and two of the global variable declarations

near those functions--defvar *color-window* and defvar

my-window.

The program processes forty-pixel by forty-pixel images,

each stored in its own image file. The image files must be

in the following format:

48

* Non-binary.

* The first item in the file must be the length of one of
the sides of the image; this is so that the program can
use any square image later on.

The rest of the items must be the grey level values, from
zero to one, of every pixel in the image, in row-major
order from the upper left-hand corner of the image.The
output is to the screen and, if desired, to an output
file. The output consists of:

1. Messages indicating the x and y coordinate chosen
by the user and the status of the image
preprocessing.

2. *subimage-five-edge-list*--a list of the array
indices of the *subimage-num-edges-array* cells
that represent the three-pixel by three-pixel
blocks which contain five edges. The image
represented is the subimage.

3. *subimage-six-edge-list*--a list of the array
indices of those *subimage-num-edges-array* cells
that represent the three-pixel by three-pixel
blocks which contain six edges. Again, the image
represented is the subimage.

4. *orig-image-five-edge-list*--a list of the array
indices of those *orig-image-num-edges-array* cells
that represent the three-pixel by three-pixel
blocks which contain five edges. Here, the image
represented is the original image.

5. *orig-image-six-edge-list*--a list of the array
indices of those *orig-image-num-edges-array* cells
that represent the three-pixel by three-pixel
blocks which contain six edges. Again, the image
represented is the original image.

6. A message indicating:

a. Whether the program found the correct x-y
coordinate of the upper left-hand corner of the
subimage in the original image; if it could not
find the correct x-y coordinate, why it could
not.

49

b. If the program found the correct x-y coordinate,
whether the program compared five-edge blocks
or six-edge blocks or both to do so.

Figure A-i is an example of the screen output produced by the

program. Actual file output is contained in Appendix C.

CAUTION: If the user uses function open output_file, he

must also use the function close_outputfile at the end of the

run or at the end of the session. If he does not, the file

will not be closed, and the user will not be able to access

it.

50

QN

N

Cn

wN

ana

-00

000

CD n a, -. -0

a ~~ SamN a -

w0 - a 20 a). am
Mm 40 a m a

-C~~ ~~ C. w La 3C

a.~C P.. ;'' a 4 3a
4o -4C0 -c a4 a2 maIC

a a ma% an in .9. ini
& OL N a - . - a- am

C @-- !! a- aona CO~ am IIV! -
.4 - a L C m

- LL 10 a a m0m -, I - 0- -0) a L E .0- m

a C &C L 0- - a US~ a L 0 ma
1. a M a U4 040 L4 a DC 40. a. . r : :mm

a1 L am M W L -0 4 ON a .*-to a V 40, a

W 3M cm -- ' . - a Lm a rC am
43~~~ -C ii If 3 3

a. 2.!! a %. 0- a ma a C4 ma9'
W 0X L. . .f , I ' I 4 --- a0 00. V)V a Ic. I n m

0~~~ L2 00 0 N . 3 0 a 030 m
13LL CC In N 4 0 D a. a L-.

0M -C s - --- a- - mCL ~ - ;;4 100 C4 01;z L1 a ~ 3 a-O *CC A- M- 044 - a aa a m-U S '
z 4 a =L4 a -L4g

Fgr A-. CCpl 0 S0 reen* an Fil a Ouataput.a

a ~ mm~ u L 3-. a- .4 - ~ a a 51m

sii -t- Dases 20; Modes LISP; Syntax: Common-lisp, Packages USE~R--

(detvar *main-screen*1
tdefvar *size-)
fdetvar esubimage-size*)
(defyar *fd')
Idetyar *fd2*)
fdefvar *output..file-status*)
(detvar *test-status*)

(defvar *orig-image-threshold*)
(defvar 'aubimage-threshold*)
Idefvar *aubima-x*)
(defvar 'subimage-yt)
Idetvar *orig-Image-array*)
(defvar *orig-image-num-edges-array*)
(defvar *subimage-num-edges-array')
(defvar *oriq-imaqe-.index-array*)
(defyar esubimage-index-array*)
(defvar *orig-imaqe-gradient-array')
(defvar *aubimae-radient-array')
Idef'var *orig-imaga-&dge-histogram*)
(defvar *subimage-edqe-hiatogram*)
(defvar torig-image-five-edge-list*)
(dofvar 'subimage-five-edge-list*)
(dafvar *orig-image-six-edge-list*)
(defvar toubimage-six-edge-list')

$initializing functions#

Function to read from a file

(defun read file (a-stream)
(read a-stream nil))

Function to make an array that holds the original Image

(defun make image array (filename)
(let ((f nil))
(sstq fd (open filename sdirection tinput))
(setq *size- (read_ file fd))
(setq *orig-image-array* (make-array (list *size* *size*)))
(dotimes (i *size*)
(dotimes 01 *size*)

(aetf (aref *orig-image-array' j i) (read_file fd))))
(close fd))

;top-level call to "make" A 3ubimage from the original image. Then rest of the
; program tries to fiqure out where this 3ubimage is.

(defun set -up (xoffset yoffset)
(make_sub _image xoffset yoffset))

; a call to this function creates a virtual subimage from the original Image, with its
* own known upper left-hand corner. It Is intended to be called by the high-level function'
s setup to establtsh the target subimage. From function setup. xoffeet and yoffset are

; the desired offsets from the upper left-hand corner of the original Imago: x and y are
; returned as 'aubimage-x* and -subimage-y' respectively. They are the x and y coordinates

of the upper left-hand corner of the new aubimage.

(defun make sub image (xoffset yoffset)
(cond I((and (<- (+ xoffet 'subimage-size') *size') (.(+ yoffset tsubimage-size') 'size-))

(aetq 'subimage-x' xoffset)
(setq *subimage-y* yoffset))

((or (> (+ xoffset 'subimage-aizeO) 'size')
(< xoffset 0)
(> (4 yoffset 'suibimage-size') *size-$

52

(< yoffset 0))
Ipprint "Either x-offset or y-offset, or both, is out of range"))))

I nniint~nOiiiiOie**Ben a na***it**nB •*B**B•• in**BBB*B**B**B***BttB iiii•B iniB eiiii~iitiB

I initializes all arrays. Intended to be the only section that needs to be changed as the

1 problem changes. Also initializes tsubimage-aizle and Ooutput-file-statuo*.
gana**aatinnitB nia s.,**,*iBiflit.*e..iit.**.***t**....it.i...ii.iBSii.*i,.tii.BB*...n n...

(defun Initialize (I
(netq *sublimag-sise* 20)
(netq *output-file-statum* 0
(sotq *test-status- 0)
(setq *orig-image-num-edges-array* (make-array (list (- *size* 3)(- asize* 3))))
(setq *subimage-num-edges-array*

(mak-array (list (- *subim&go-ize* 3)(- *subjmage-sige* 3)1)1

(setq *orig-Limge-qradint-array* (make-array (list (- *sixe* 1)1- *size* IM)
(setq *subimage-gradient-array*

(ake-array (list I- 'subinage-size* I)(- *ubimage-9ize 1))))

(setq *orig-image-edge-histoqram*' ())

(setq *subimaqe-edeo-histogram* *))

(setq *orig-image-index-array* (make-array (list (- *size 31(- *size* 3))))
(setq *subimage-index-array' (make-array (list (- amubimage-isze* 3) (- *subIuaes-sisee 3))))

(setq *orig-image-five-edge-listw I())

(setq *or -Image-six-edge-list* 1()

(setq 'subimage-five-edge-lit '())

(setq *subimge-six-edge-list' *

eoe eeeeeieeiie seeeeeeeii~ii**nseneii*iie#*oe e*ieee iii~iieeee*ieiii**,*, io eee
preprocessing functions I

I This function calculate* the gradient. Parameters are the name of the Image array, the *

I length of one of its aides assuming the array in square, and the name of the array into *

I which the results of the calculations is to be stored. The latter array will be smaller*
j than the image array by I in both dimensions. Fills the array with the gradient B

; calculated at each point. Gradient is the square root of the sum of the square of the B

I difference between the gray levels of the point and its right neighbor and of the

; square of the difference between the gray levels of the gray levels of the point and B

I its neighbor Immediately below. Called by function processimages. B

(defun calculategradient (size x y gradient-array)

(dotimes (I (- size 11)

(dotimes (j (- size 1))

(set (aref gradient-array j i)
(sqrt (+ (expt (- (aref *orig-image-array- (j 1 x)(+ i y))

(aref *orig-image-array' (j j x)0 (4 1 1) y))) 21
(vxpt C- (aref 'orig-image-arrays (+ J x)(+ I y))

(aref *orig-image-array' (+ (1 j 1) x) (+ i y))) 2))))))

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .B*B****BB*BBtBB*~ ...*Bt* BB*BB**BBB* * .* ***B***BB*S

; This function looks at at the overlapping 9-cell blocks of an array, starting at the

; array's upper left-hand corner. There is a 9-cell block at each point; the members of the

; 9-cell block are the point itself, its two neighbors to its right, the neighbor

; immediatly beneath it and this neighbor's two neighbors to the right, and the three
; neighbors immediately below those three neighbors. Each cell in the 9-block array that

; exceeds a given threshold is given a value of 2 raised to x, where x is a number between *
j 0 and 6 and equates to the ordinal value of the cell if the calls are numbered from 0 to 0

j from the upper left hand corner. Last, all these values are added tip and the sum is

; than used to represent the 9-cell block In an array whose indices also signify the upper B

) left hand corner coordinates of the 9-cell block in the original array.-
p i BB* **B** IBAS B * *1St * BB****B**t *B**B*B**B****BB*B** S SABSIBS ***,BB.BB***.Biee.B.B..

(defun calculatenum edgesand uniqueindex numbers

(gradient-array size threshold unique-index-num-array num-edges-array)

(let ((temp-array nil) (sum nil) (num-edges nil))

(setq temp-array (make-array '(3 3)))

(dotimes (i (- size 3))

(dotimes (1 (- size 3))

(setq sum 0)

(setq num-edge 0)
(dotimes (k 3)

(dotimes (1 3)

(cond ((or (- (aref gradient-array (1 1) (+ k)) threshold)

53

J> (arot gradient-array (+ I j) (* k I)) threshold))
(setf (&aet tamp-array I k) 1))
(IC(&at gradient-array (+ 1 j) (+ k I)) threshold)
(mett (arot temp-array 1 k) O)M

(cond (4- tarot temp-array I k) 1)
Isetq sum (* sum tempt 2 (+ I (* 3 k)f)))
(aetq num-edges (+ num-edges 1))))))

(setf taret unique-index-num-array j 1) sum)
tsett tarot num-edges-array j 1) num-edges)))))

1 This function selects the threshold to be used throughout a particular run. based on the

Inumber of five-edge block* there are in the subimage's gradient array. The number of
I edges found throughout the subimage's gradient array are stored In Isaubimage-num-edges-
array. If there are not at least 10 five-edge blocks available with the first threshold
j tried, another threshold In selected. Each time a threshold is selected, calculate_num a
I edges and -unique_index_numbers must be run and an edge-histogram created based on the
I the results. This process continues until a threshold produces sufficient number of

I five-edge blockst. The thresholds available to this function are given It in a list called'
I nine-best-listi it contains (.1 .2 .3 .4 .5 .6 .7 .8 .9). The function attempts to at
j bracket the goal between the number of five-edge blocks produced by successive thresholds.*

I Oncei this happens, it tries to get a little closer to the goal by trying either .05 above
I or .05 below the best threshold so far. Which ever of theme produces five-edge blocksa
I closest to the goal in the threshold used elsewhere in the program to produce the
s 'orig-num-edgem-arrayt, *subimage-num-edges-array*, *orig-image-Index-array*. and the
; taubimage-index-array'.a

(defun select threshold J)
(let ((lower-bracket 1000) (upper-bracket 0) (goal 10) (nine-best-list nil)

(edge-histogram nil) (test-threshold nil) (temp-threshold nil))
(setq nine-best-list * (.1 .2 .3 .4 .5 .6 .7 .0 .91)
(do ((best-list nine-best-list (cdr beslt-list)))

((and (< goal upper-bracket)
(>- goal lower-bracket)))

(setq temp-threshold (car best-list))
(setq upper-bracket lower-bracket)
(calculate num edges and unique_index_numbers *subimage-gradient-arraya

subimage-uiae temp-threshold Osubimaqe-index-array'
'subimage-num-edge-array') (princ "."

(setq edge-histogram (make_histogram soubimage-num-edges-array* ht~bimage..sizelt))
(setq lower-bracket (cadddr (cddr edge-histogram))))

(terpri)
(cond (4- lower-bracket goal) temp-threshold)

((and l- abs C-goal lower-bracket))
tabs (-goal upper-bracket))

(-lower-bracket upper-bracket)
(> lower-bracket 1)) temp-threshold)

((Or (and (- (abs (goal lower-bracket))
labs (-goal upper-bracket)))

I> lower-bracket upper-bracket))
(and (- (abs (-goal lower-bracket))

labs C-goal upper-bracket)))
I<- lower-bracket tipper-bracket)
j< lower-bracket 2)))(C- temp-threshold .1))

((and (c labs (-goal lower-bracket))
(abs (-goal upper-bracket)))

I/- lower-bracket goal))
(Setq test-threshold I- temp-threshold .05))
(calculate_num_edges and unique index numbers 'subimage-gradient-array'

'subimage-size* test-threshold *subimage-) ndex-array*
subimage-num-edges-ar ray)

(setq edge-histogram (make histogram *subimage-num-edges-array' *subimage-size'))
(cond (4< (abs (-goal (cadddr (cddr edge-histogram))))

labs (-goal lower-bracket))) test-threshold)
(land l- abs C-goal (cedddr (cddr edge-histogram))))

(abs (-goal lower-bracket)))
(-(cadddr (cddr edge-histogram)) lower-bracket)
((cadddr (cddr edge-histogram)) 1)) test-threshold)

((or (and t- abs 4-goal (cadddr (cddr eadge-histogram))))
(abs (-goal lower-bracket)))
i~ cadddr (cddr edge-histogram)) lower-bracket))

(and l abs (-goal (cadddr (cddr edge-histogram))))
(abs C goal lower-bracket)))
(-(cadddr (cddr edge-histogram)) lower-bracket)

(< (cadddr (cddr edge-histogram)) 2))) tomp-threshold)
l(abs (- goal (cadddr (cddr edqe-histogram))))

54

(abs (- goal lower-bracket))) temp-threshold)))
((and 01 (abs (- qoal lower-bracket))

labs J- goal upper-bracket)))
(-lower-bracket goal))

(astq temp-threshold (- tamp-threshold .2))
(setq lower-bracket upper-bracket)
(calculate_num-edges and unique_index -numbers tsubimage-gradient-array*

-subimage-size* temp-threshold * subimage-index-array*
'subimage-num-edges-array 'I

(setql text-threshold (+ temp-threshold .05))
(calculate nun edges and unique index-numbers *xubimage-gradient-array*

* subinage-si zes test-threshold *subimage-index-array*
-subimago-num-edges-array*)

(setq edge-histogram (make histoqram *subimage-num-edges-array' 6subimage-sizee))
(cond ((< (abs (goal (cedddr (cddr edge-histogram))))

tabs (-goal lower-bracket))) test-threshold)
((and t- abs (-goal (cadddr (cddr edge-histogram)))

tabs (-goal lover-bracket)))
(-(cadddr (cddr edge-histogram)) lower-bracket)

f> Icadddr (cddr adge-histogram)) 1)) test-threshold)
((or (and t- (abs I- goal (cadddr lcddr edge-histogram))))

(abs t- goal lower-bracket)))
(-(cadddr (cddr edge-histogram))I lower-bracket))

(and t abs C-goal icadddr (cddr edge-histogram))))
(abs (-goal lower-bracket)))
(-(cadddr (eddr edge-histogram)) lower-bracket)
(~(cadddr (cddr edige-histogram)) 1))) temp-threshold)

((- abs (-goal (cadddr (cddr edge-histogram))))
labs I- goal lower-bracket))) temp-threshold))))))

IThis function creates a histogram In which is stored the number of edges that are found *
;within each of the nine-cell blocks, using nun-edges-array as the provider of the
; statistics. Hum-edges-array is filled by function calculate_nun_edges_and_unique index_
Inumbers. Inputs to this function are: the array holding the edge Information for the 6

s appropriate image, the name of the list in which to store the edge count, and the size of*
I the image (i.e.. the length of one of Its sides).
ISince there are 10 possible counts of edges in each nine-cell block. an array is not a
; convenient data structure. Instead, the count is stored In a list whose values represent *
;the number of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 edges, respectively, found In all the nine-call*
; blocks of the Image.*

(defun make -histogram (nun-edges-array size)
(let j (sumO 0) (sunl 0) (sun? 0) (3un3 0) (sum4 0) (sun5 0) (SUM6 0) (suIm7 01 (sumB 0) (sUM9 0)

(edge-histogram nil))
(dotimes (I (- size 3))

(dotimes (j (- size 3))
1cond ((- 0 Caret num-edges-array j i))

(3etq sunO (+ sumO 1)))
((- 1 (aref nun-edges-array j 1))
(setq suml J+ suet 1)))

(1- 2 (aref num-edges-array j I))
(setq sum2 C# sum? 11))

((- 3 (aref nun-edges-array j I))
Isetq sum3 J+ sum3 1)))

((- 4 (aref nun-edges-array j I))
(setq 2um4 (+ sum4 1)))I

((- 5 (aref nun-edges-array I i))
1setq sum5 (* sumS 1)))

(1- 6 (aref nun-edges-array j i))
(setq sum6 (+ sum6 1))l
1- (aref nun-edges-array j i))

(Isetq sum'? (+ sum7 M))
((- 6 (aref nun-edges-array j 1))
(setq sumB (+ sumS IM)

((- 9 (aref nun-edges-array j i))
(setq sun9 J+ sium9 2))))

(setq edge-histogram (list SUMO sUel sum? sun3 sum4 sunS sunG suml sunS sum9)1))

1,i,,g~~giaigg~i,,~aliM off 11111 fI~gI~I~gaillIIIIaI~e~IeI
primary functions

55

I This function create* a list of x-y coordinates that correspond to the upper left-hand cell*
Iof particular nine-cell blocks in an Image. The function looks through the array that
Iholds the number of edges found in each nine-cell block of the Image and puts in the lint
; a copy of the x-y coordinates that correspond to the upper left-hand calls of the hino-cell.
; blocks that have num-edges number of edges. Inputs are the name of the array that holds
; the numbe r-of -edgesa information about the Image In question, the number of edges of
$ Interest, the size of the Image, and name of the lint into which to store the results of *
I the function.

(defun msae dge list (num-edges-array num-edges size)
(let ((list-name nil))
(dotimes (i (- size 3) list-name)

(dotimes (j (- size 3) list-name)
(cond ((- num-edges (arof num-edges-array j I))

(setq list-name (append list-name (list I I))))

I This function In the high-level function that calls three nested loops into action,
I The result of the nested loops in stored in likely-match, which represents the first point
Iin the original image that the program thinks might be a match to the point of interest a
1in the subimage. This match is based on finding the same number of edges in the nine-cell
* block defined by the first pair of array indices in the subimage-edge-liot as in the nine-
p cell block defined by the likely-matching point in the original Image; and Is based on the
I finding the same pattern of five-edge blocks sterting at the point defined by the firsta
i pair of array indices in the subimage-edge-list as the pattern of five-edge blocks starting*
Iat the likely-matching point in the original image, and finally is based on these two 0

i haveing the same Index numbers assigned them in their index-arrays, likely-match may be *

I nil, in which case there to no hope to find a match In the two images. If likely-mwatch a
i is not nil, check results is called. Inputs are the either *subimage-five-edge-list- or a

; 6subimage-aix-edge-list. *orig-image-fivo-edge-lIst* or *orIg-imags-six-sdgs*lIst'. and
s the corresponding number of edges, ea.ther 5 or 6.

(defun find -match (subimage-edge-list orig-Image-edge-list num-edqes)
(let ((likely-match * C)

(setq likely-match (find,_likely match subimage-edge-list
orig-image-edge-list?)

(cond ((eq likely-match nil)
(terpri)
(princ "There are no matches In the edge list*")
(terpri)
(cond ((- 'output-file-status* 1)

(terpri *fd*)
(prina "There are no matches In the edge lists" *fd*)
(terpri -fd-))))

((neq likely-match nil)
(check_results likely-match num-edges))Ill

This function Is the outer of three loops. It loops through the orig-imAge-edge-list until*
It finds a pattern In the list that matches the pattern fouind In the subimage-edge-list.

aIf a matching pattern in found, it sets likely-mtch-list to thi. result ot the function
Icompare uniqueindex numbers. rf no matching pattern Is found. It calls Itself with the
;orig-Image-edgelis3t as it was when the first matching pattern Was found. if, in the end'
; likely-match-list is nil. It again calls Itself with the orig-image-edqo-list In its
s latest state. The function returns likely-match-list, as it eventually exists.
; Inputs are either *subimage-five-edge-list* or asublmage-Six-edge-list. and either 'cr19-
; image-five-edge-list' or *o~-Mg-i-del~* Output is likely-match-list. It
; calls functions second loop, compare unique_index_numbers, and Itsolf. It Is called by
;function find match.

(defun find likely match (subimnage-edge-limt orig-image-edge-l ist)
(let ((subimage-pattern nil) (orig-image-pattern nil) (likely-match-list')

(orig-key-x nil) (orig-key-y nil))
(setq subimage-pattern

(find pattern subimaqe-edge-list (length subimage-edge-list)
(setq orig-image-pattern

(do ((orig-image-edge-list-temp orig-image-edge-list (cddr orig-image-edgelist-tmp)l)
((or (tree-equal subimage-pattern orig-image-patteri)

(< (length orig-image-edge-list-tmp) (- (length subimage-edge-list) 2)1)
(list orig-key-x orig-key-y oriq-image-pettern))

(setq orig-image-pattern '(0))
(setq orig-key-x (car orig-image-edge-list-temp))

56

(setq orig-key-y (cadr orig-imaqe-edqe-list-templ)
(aetq arig-image-pattern

(second-loop subimage-pattern orig-image-edge-l 1st-temp orig-imag*-pattern
orig-key-x orig-key-y))

(setq oriq-image-edqe-list (cddr orig-image-edje-list-temp))))

(aetq orig-key-x (car orig-imaqe-pattern))
asetq orig-key-y (cadr orig-image-patternl)
(aetq oriq-image-pattern (caddr orig-Image-pattern))s(pprint oriq-image-pattern)
(cond ((tree-equal aubimaqe-pattern oriq-image-pattern)

(setq likely-match-list
(compare unique indexc_numbers (car oubimage-edge-list) (cadr aubimaqe-edqe-list)

orig-key-x oriq-key-yl) likely-match-list)
(t (find_likely match subimage-edge-list orig-image-edge-listfl)

(cond ((eq likely-match-list nil)
(setq likely-match-list

(find likely match subimaqe-edge-list oriq-imaqe-edge-list)) likely-match-list)
(t likely-match-list))I

gThis function loops through the subimage-pattern and calls third-loop to leek for the nam
apattern in the orig-imeqe-edge-list sent it by find likely match. Inputs are the
Isubimage-pattern, a modified version of either *orig-image-five-edge-list* or torig-imago-

; aix-edge-list', orlg- Image-pat tern, and the index values that were car'd and cadrld off a
; the oriq-im~ge-edge-list as it exists in find-likely match. It is from these index values*
Ithat the pattern in the rest of the orig-image-edge-list in formed. output is orig-image- 0
pattern. Calls third loop.

Idefun second loop (xubimage-pattern orig-imaqe-edqe-lint orig-image-pat torn orig-key-x
orig-key-y)

(let ((sub-delta-x nil) (sub-delta-y nil) (orig-delta-x 10) (crig-delta-y '0)
(temp-orig-image-edge-list ())(delta-list (M0)

(setq oriq-imaga-edge-list (cddr orig-image-edqe-list))
(setq temp-orig-image-edge-list orig-image-edge-list)
(do ((temp-subimage-pattern subimaga-pattern (cddr temp-subimage-pattern))

((Or (null temp-subimaqe-Pattern
(null orig-image-pattern)) (cdr orig-imaqe-pattern))

(setq sub-delta-x (car temp-subimage-pattern))
(setq sub-delta-y fcadr temp-subimage-pattern))
(setq delta-list

(third-loop temp-or'g-image-edge-list orig-key-x oriq-key-y orig-delta-x
orlg-delta-y sub-deita-X sub-delta-yll

* (setq orig-image-pattern (append orig-image-pattern delta-list)))))

I The innermost of the three loops, this function loops through the orig-imaqe-edge-list
I that is passed to it by second loop. It subtracts the first item In the list from
;orig-key-x and assigns It to origj-delta-x: It subtracts the second Item In the list from
;orig-key-y and assign* It to orig-dolta-y. If oriq-delta-x equals su)b-delta-x and if
Iorig-delta-y equals sub-delta-y. that means that the distance between two array cells in *

: *orig-image-num-edges-array- is the same as the distance between two array cells in the
;* 'ubimeg-num-edges-array* and that a matching pattern is emerging from the orig-image-edge-0
;list. If they are equal. orig-delta-x and orig)-delta-y are put into a list. and the
;function returns this list. If they are not equal, the function returns the null list.
; Called by second loop.

(defun third loop (oriq-imaqe-edge-list orig-key-x orig-key-y orig-delta-x orig-delta-y
sub-delta-x sub-delta-y) (let ((delta-list '()))

(do ((temp-orig-i mage-edge-l13t orig-image-edge-list (cddr temp-oriq-image-edge-list)))
(for (null temp-orig-image-edge-li stl

(and (-oriq-delta-x sub-delta-x)
(- rig-delta-y sub-delta-y))) delta-list)

(setq orig-delta-x (abs (-orig-key-x (car temp-orig-image-edge-list))))
(setq orig-delta-y (abs (-orig-key-y (cadr temp-orig-image-edge-list))))
(setq delta-list (list orig-delta-x orig-delta-y)))

(cond ((and I- orig-delta-x sub-delta-x)
(- orig-delta-y sub-delta-y)) delta-list)

(for I-orig-delta-x sub-delta-x)
(I.orig-delta-y sub-delta-y)) ' 0)))

; This function finds a pattern within a list by finding the difference between each pair
:and the first pair. Inputs are either asisbimage-five-edqe-lista or s3ubimage-six-edge-
*list and the length of that list, It returns the pattern found.

~~~~~~~. . . . . . . ... *.... *..... .*... .. .. A*..........

(defun find pattern ledge-list listlenqth)

57



(let ((first-x nil)(firat-y nil) (pattern nil))
(setq tirst-x fcar edge-list))
msetq first-y (cadr edge-list))
(dotimes (i I- (/ listlength 2) 1) pattern)

(setq edge-list (cddr edge-list))
(aetq pattern (append pattern (list (abs I- first-x (car edqo-llst)ll

(abs I- first-y (cadr edge-list)))))))))

jThis function checks the common edge list areas against the unique number for the
j corresponding nine-cell blocks. Those nine-cell blocks with both matching number of edges
; and matching unique numbers are then put Into a list of lists. Each list within the list
1 is made up the x-y coordinate of the subimage nine-call block and then the x-y coordinate
8of the original Image nine-cell block. No inputs are required.

(defun compare uniquacindex_numbers (sub-image-x sub-image-y orig-Image-x orig-image-y)
Icond (I- (aref tsubimage-index-arras aub-image-x sub-image-y)

(aref sonig-image-index-array* orig-image-x orig-image-y))
(list sub-image-x aub-image-y orig-image-x orig-image-y)
It nil))

; This function checks the program's guess as to the position of the subimage within the
$ original image, I.e., compares the x-y coordinate of the upper left-hiand corner of the
1 subimage found by the program (and stored In Oilikely-match-lists) to the actual left-hand*
*corner of the subimage stored in the global variables esubimfagex't and tsubimage-y-.

Idefun check results (likely-match num-edges)
(let ((star& ... ... ...

(cond ((null likely-match)
(terpri)
(princ "'The program has not found the coordinates that correspond to the upper")
(terpri)
(princ "left-hand corner of the subimage.")
(terpri)
(pprint stars)
(cond ((- 'output-file-status' 1)

(terpri *fd*)
(princ "The program has not found the coordinates that correspond to the

upper" *fd') (terpri *fd-)
(princ "left-hand corner of the subimage." -fd*)
(terpri)
(pprint stars *fd'))))

It (cond I land I- saubimage-x A - (caddr lIIkelIy-match) (car I kely-match))
(- *3bmaey (- Ccadddr likely-match) (cadr likely-match)

(terpri) (terpri)
(princ "by comparing nina-block cells with "
(princ num-edges)
4princ "edges, the program has correctly found "
(Lerpni)
(princ "that the upper left-hand corner "
(princ "of the stibimage corresponds to the following '
ltorpri)
(princ "x and y coordinates, respectively, of the original image:")
(terpri)
(terpri)
(princ
(princ -3ubimagex*)
(te rpri')
(princ
(princ *subimage-y-)
4terpri)
(pprint stars)
(cond I(- num-edges 6)

(pprint stars')))
(cond I(- *output-file-statu2* 1)

(terpri 'fd') (terpri *fdl)

4princ "By comparing nine-block cells with - fd*)
(princ num-edges 'fd')
(princ " edges, the program has correctly found" *fd')
(terpri *fd')
(princ "that the upper left-hand corner " *fd-)
(pninc "of the subimage corresponds to the following I- fd*)
(terpri *fd')

58



(prnc "xc and y coordinates, respectively, of the original images-
-fd-)

(terpri. fd'(
(terpri *fd-(
(Princ - * (c)
(princ *subimago-x* Otd*)
(terpri *fd*
lprInc - fd*)
(princ Isubimage-y* *fd*)
Iterpri -1d*)
(pprint star* *fd*)
(cond I(- num-edges 6)

(pprint. stars "fd*)))))
Icond ((- *test-atatus* 1)

(test results num-edges) ) )))))

primary high-level functions

jThis function calls the other preprocessing functions and decides which are the most
Ipromising areas revealed by the preprocessing.

(defun process images (
qlet ((stars ****AO***A**AAAA*S*A*At*A*AA*SAAA***AA)

(terpri)
(prina *subimage-x*)
(princ I and ")
(princ Asubimage-y*)
(princ Iare the x and y coordinates of the original image point")
(terpri)
(princ "that is the upper left-hand corner of the subimage. 'I
(terpri) (terpri)
(princ "running calculate gradient on the original image") (terpri)
(calculate gradient *size- 0 0 *orig-image-gradient-array-I
(princ "running calculate gradient on the subimage") (terpri)
(calculate-gradient *subimage.si ze- *nubimage-x* *subimage-y* *subimaqe-gradient-arrayA)
(princ "running select_threshold")
Isetq Csubimage-.threshold* (select_threshold??
(setq 'orig-image-threshold* *subimage-threshold*)
(princ "running calculati num edges and unique index-numb~ers on the original Image") (terpri)
(calculate num_edges_and_ ,nique index_numbers

*orig-Image-gradlent-array- -si ze* -orig-image-thresholdt
*orig-image-index-array- *orig-image-num-edgas-arrayS)

(prlnc "running Cal culate_num_ edges and uni que_index_numbers on the subimage") (terpri)
(calculate num edges and unique index_numbers
Asubimage-qradient -array* Ssubimaqe-si ze* -subimage-threshold* *aubimage-indox-arrayt

*aubimage-.num-edges-array4)
(terpri)
(princ "The threshold for this run is "

1princ wsubimage-threshold-) (princ )

(terpri) (terpri)
(princ "Asubimage-five-edge-list*:"i (terpril
(setq *slobimage-five-edge-list-

(make edge list *subimage-num-edges-array" 5 -subimage-size-ii
(printpaired_list 'sujbimage-five-edge-list*) (terpri) (terpri)
(princ "*subimage-six-edge-liat-:") (terpri)
(setq *subimage-six-edge-list'

(make edge list *subImage-num-edges-array* 6 *subimage-size*))
(printpaired_list *subiMage-six-edge-listA) (terpri) (terpri)
(princ "Aorig-image-five-edge-list*:") (terpri)
(setq *orig-image-five--edge-list* (make edge_list 'orig-image-num-edqes-arrayA 5 *size*))
(printpaired_list *orig-image-five-edge-listi (terpri) (terpri)
(princ *Ioi-mg-i-de13'"(epi
(setq *orig-image-six-edge-listf (make edge list *orig-imaqe-num--edges-array* 6 *site*))
(printpaired_list -orig-image-six-ecige-list') (terpri)
(pprint stars)
(cond ((- *output-file-status* 1)

(terpri *fd*) terpri -td")
(princ -sxubimage-x- -td*)
(princ " and " -fd-)

(princ *sUbIMage-y' "td')

(princ " are the x and y coordinates of the original image point" INd)
(terpri "fd')

59



(princ "that is the upper left-hand corner of the subimage." -fdl)
(terpri Std*) (terpri *fd*)
(princ "running calculate_gradient on the orig-image" *fd*) (terpri *fd*)
(princ "running calculate_gradient on the subimage" *fd6) terprI Afd*)
(princ "running select_threshold" *fd-) (terpri -fd-)
(princ "running calcualte_num edges and-unique index numbers on the original image" *fd-l
(terpri *fd5)
(princ 'running calculate_flue edgesand unique index_numbers on the 3ubimage" -td-l
(terpri *fd*) (terpri *fd*)
(princ "The threshold for this run Is " *fd*)
(princ *subimage-threshold* "fd*)

(princ "." *fd*)
Iterpri 5fd*) (terpri *fd*)
(princ "*subimage-five-edge-list*:" *fdt) (terpri *fd*)
(print paired list to output_file *subiinaga-five-edga-list*)
(terpri *fd*) (terpri *fd*)
(princ "**ubimage-six-edge-list*:" *fdt) (terpri *fdt)
(print paired list to output_file *subimage-six-edge-list*)
Iterpri *fd*) (terpri *td*)
(princ "*oriq-image-five-edge-list*:" *fdt) (terpri *fd*)
(printpaired list to output_file *orig-image-tive-edge-list)
(terpri *fd*) (terpri *fd*)

(princ "*orig-image-six-edge-list*:" *fd*) Iterpri *fd*)
(print paired list to outPUt_file *orig-image-six-edge-list'l iterpri *fd*)
Ipprint stars *fd-) (terpri *fd*)Il

(cond ((> (length "subimage-five-edge-list*) 2)
(find-match *subimage-five-edge-list- *orig-image-five-edge-list- 5))

((eq *subimage-five-edge-list" I()
(terpri) (terpri)
4princ "There are no five-edge blocks in the subimage.")
(terpri)
(pprint stars)
(cond ((- *output-file-status" 1)

(terpri "fd*) (terpri *fd")
(princ "There are no five-edge blocks in the subimage." *fd*)
(terpri *fd*)
(pprint stars *fd*)f))

1(- 2 (length *subimage-fIve-edge-1ist"))
(terpri) (terpri)
(prioc "There is only one five-edge block In the subimage. '1
(terpri)
(pprint stars)
(cond ((- *OUtpUt-file-3tatU3* 1)

(terpri *fd*)(terpri *fd")
(princ "There is only one five-edge blocks in the subimacjo." *fd-)
(terpri -fdl)
(pprint stars *fd*)))))

(cond ((> (length *subimage-six-adge-list*) 2)
(find_match -subimage-six-odge-list* -orig-imago-six-edge-11st- 6))

((eq asubimage-six-edge-list" fl
(terpri) (terpri)
(princ "There are no six-edge blocks in the subimago."1)
(terpri)
(pprint stars) Ipprint stars)
(cond (4- *ouLpuL-file-3Latujs' 1)

(terpri *fd-)(terpri -fd-)
(princ "There are no six-edge blocks in the subimage." *fd")

(terpri *fd")
(pprint stars *fd*) ipprint stars "fd*))))

("2 (length *subimage-six-edqe-lis9t-)l
(terpri) IerprJ)
(princ "There Is only one six-edge block in the 3ubimage.")
(pprint stars) (pprint stars)
(cond ((- *output-file-statust 1)

(terpri *fd*)(terpri *fd')
(princ "There is only one six-edge block in the subimage." "fd*)
(pprint stars "fd")(ppicint stars *fd")'))))))

*The following functions can be used to display the Images. Tbese functions are modified I
*versions of Jim Zanoll's functions. His comments are Included.I

*make color window creates an empty window on the color graphics display.

60



(do fun make_color_window
(&irest options &key (superior (color; find-color-scraen create-p tj)
&allow-other-keys)

(apply I'tvumake-window *tvzwindow
iblinker-p nil
sbordera 2
tsive-bits nil
a expose-p t
gdefault-character-3tyle

(afix &bold ; large)

:label "IMAGE ANALYSIS"
superior superior
options))

(dafyar *color-window* (make_color window))

I make blue window creates a blue window on the color graphics display

(defun make_blue_window (great options)
Isetf *ain-screna (send *terminal-Io* isuperior))
(apply I'make_color_window

terase-aluf (send color~color-screen
compute-color-s lu

tv:alu-seta 0 0 0.5)
options))

(defvar *my-window- (make_blue_window))

; color-pixel colors a pixel with the inputted x and y coordinates In the color indicated by-
;the Inputted shade

(defun color pixel (xcoord ycoord shade)
(send *my-window* :draw-point xcoord ycoord shade))

*display image draws the picture that is represented by the array

(defun displayimage (array-name x y size)
(let ((b~w-color nil))
(dotimes (row-number size nil)

(dotime* (cal-number size nil)
(setq b&w-color (aref array-name col-number row-number))
(color pixel (+ x col-number) (+ y row-number) (send (send -my-window* :screen)

:compute-color-alu culor~alu-x bfiw-color biw-color b&w-color?))l)j

miscellianeous

;With this function, the user can print an array to the screen. Inputs are the array name,-
; the length of one of its sides (it must be square) , and the indices Into the array for
s the point at which the user wants the display to begin.

(defun print array (array-name size start-x start-y)
(dotimes (I size)
(terpri)
(dotimes (j size)

(princ (aref array-name (4 start-x j) (+ start-y i)))
(princ " '))J)

;With this array, the user can print an array to a file. The Inputs are the same as to *

;function print array except for an extra one, which is the name, in double quotes, of the
;In which to store the array.

(defun print array file (array-name size start-x atart-y filename)
(let ((fd nil))

(setq fd (open filename :direction :output))
(dotimes (i size)

61



(terpri fd)
(dotimes (J size)

(princ (aref array-name (+ start-x jI (+ start-y i)) fd)

(prino " 
" 

fd|)

(close fd)))

; This function does a pretty print of a list that is logically a list of paired lists, so-

; that the user can more readily understand the list's contents. Input is the list's

I name. Called by function processimages. A

(dofun print paired list (list-name)
(let ((paired-list '()))
(dotimes (i (I/ (length list-name) 2))

(setq paired-list (append paired-list (list (list (car list-name) (cadr list-name)I))

(setq list-name (cddr list-name)))

(print paired-list)))

i This function does a pretty print of a list to the user's output file. Called by a

1 processimages. a

(defun printpaired_listtooutput file (list-name)

(let (spaired-list *1)))

(dotimes (i (/ (length list-name) 2))

(setq paired-list (append paired-list (list (list (car list-name)(cadr list-name)) ))

(setq list-name (cddr list-name)))

(princ paired-list *fd*)))

; This functions enables the user to store the output of the program to a file. Called C

; by the user, it has one input, the filename of the file in which the user wants to store a

# the output. If the user uses this function, he must also use function closeoutputfile*

; before logging out, or the output file will remain open and inaccesible. Setting a

1 *output-file-statusS to 1 lets the functions that produce output know to send output to A

s to the output file. Only one file may be open during any one run of processimages. A

(defun openoutputfile (filename)

(setq *fd* (open filename :direction :output))

(setq *output-file-status* 1))

This function closes the output file. Called by the user, it can be used at the end of A

a run or at the end of the session. Input is afd*, the variable that takes on the a

the name of the output file. a
* aaaaaeaaaaaaaaaaaeaaaaaatiaiaae~aee**aaaeataaaeaaaa a.**aea e aeeaaaa aaa a.*aaaeaae aeeaa

(defun closeoutput file (filename)

(close filename)

(setq *output-file-statusa* 0))

;These functions test the program on every possible point in the original image.
; complete test is called by the user; x and y are thu coordinates whtuu the test is to A

; begin, ideally 0 and 0. test _results is called by function check results, that is, it A

; called only if the program succeeds in finding the correct coordinates of the upper A

; left-hand corner of the subimage. A

(defun complete test (input-filename x y output-filename)

(setq *fd2* (open output-filename :direction :output))

(setq *test-status* 1)
(makeimagearray input-filename)

(initialize)

(do ((I y (+ 1 1)))
((- i 211)

(do ((j x (+ j 1)))
((- j 21))

(setup j i)(terpri *fd2*)

(princ 'subimage-xl: " lfd2*) (princ j *fd2*) (princ 
" 

*subimage-y*: *fd2l)
(princ I afd2a)

(processimages)))
(setq Otest-status* 0)

(close efd2*))

(defun test results (num-edges)

(terpri *fd2*)

62



4princ wThe program found *subimage-x* to be " *fd2*) (princ *subimago-x- *fd2l)
Eprinc - and *subimago-y* to be " *fd2*) (princ *subimage-ye *fd2a) (princ using *fd2*)
4princ num-edges efd2t) (princ " dge blocks. w *fd2*)
(princ "Threshold was Afd2-jHprinc *subimage-threshold* *fd2-))

63



APPENDIX B

RESULTS OF SELECTED TESTS

Without function select-threshold:

Number of Number of
5-edge blocks 6-edge blocks

Threshold *subimage-x* *subimage-y* Result in subimage in subimage

Image 1

.3 8 17 match 9 0

.3 0 8 matches 14 4

.3 10 10 matches 9 4

.3 2 16 match 14 0

.3 18 18 match 3 0

.35 2 16 match 9 0

.35 5 5 matches 8 9

.35 10 10 match 5 0

.35 0 3 matches 6 2

.35 20 20 no match 1 0

.35 10 20 match 8 0

.35 12 18 match 8 0

.4 0 20 match 8 1

.4 12 18 match 8 0

.4 5 5 matches 5 2

.4 10 10 match 8 0

.4 20 20 no match 1 0

.4 8 17 match 5 0

Image 2

.15 0 13 match 4 1

.15 8 3 matches 19 4

.15 0 0 matches 11 6

.15 20 20 match 14 0

.15 0 2 matches 6 3

.15 20 0 matches 33 19

.175 5 4 matches 6 3

.175 11 20 match 3 0

.175 0 20 match 2 0

.175 20 20 match 4 0

.175 3 8 matches 8 3

.175 10 8 matches 6 3

.175 13 13 no match 0 0

.175 0 13 match 2 0

.2 5 5 match 2 0

.2 0 20 no match 0 0

.2 8 3 match 2 0

.2 13 0 match 3 0

64



With function select-threshold:

Number of Number of
5-edgeblocks 6-edgeblocks

Threshold *subimage-x* *subimage-v* Result in subimage in subimage

Image 1

.25 19 0 matches 7 5

.3 20 20 matches 15 2

.3 14 1 matches 10 2

.35 5 5 matches 8 9

.35 2 16 match 9 0

.35 10 10 matches 9 4

.35 0 3 matches 11 7

.4 0 20 match 8 1

.4 10 20 match 8 0

.4 12 18 match 8 0

Image 2

.1 13 13 matches 20 18

.15 5 5 matches 15 14

.15 0 13 match 4 1

.15 19 19 match 14 0

.15 19 8 matches 14 6

.15 11 20 match 14 0

.15 0 0 matches 12 6

.15 20 11 matches 8 2

.2 8 3 match 2 0

.2 13 0 match 3 0

65



APPENDIX C

SAMPLE RUNS

5 and 5 are the x and y coordinates of the original image point
that is the upper left-hand corner of the subimage.

running calculate gradient on the orig-image
running calculate gradient on the subimage
running selectthreshold
running calcualte num edgesanduniqueindex_numbers on the original image
running calculate num edgesanduniqueindex_numbers on the subimage

The threshold for this run is 0.35.

*subimage-five-edge-list*:

( 2) (4 3) (3 4) (6 4) (11 10) (10 15) (9 16) (10 16))

*subimage-six-edge-list-:

((2 2) (3 2) (4 2) (2 4) (4 4) (11 8) (12 8) (11 9) (12 9))

*orig-image-five-edge-]ist*:
((13 3) (12 4) (14 4) (6 7) (9 8) (8 9) (11 9) (16 15) (30 16) (1 19) (2 19) (3 19) (15 20)

(14 21) (15 21) (13 22) (14 22) (26 22) (12 23) (13 23) (0 26) (0 28) (12 33) (13 33) (25 33)
(26 33) (2 35) (2 36) (3 3b))

*orig-image-six-edge-list*:
((7 7) (8 7) (9 7) (7 9) (9 9) (16 13) (17 13) (16 14) (17 14) (0 27))

By comparing nine-block cells with 5 edges, the program has correctly found
that the upper left-hand corner of the subimage corresponds to the following
x and y coordinates, respectively, of the original image:

5
5

By comparing nine-block cells with 6 edges, the program has correctly found
that the upper left-hand corner of the subimage corresponds to the following
x and y coordinates, respectively, of the original image:

5
5

19 and 0 are the x and y coordinates of the original image point
that is the upper left-hand corner of the subimage.

running calculate gradient on the orig-image
running calculate gradient on the subimage
running select_threshold

running calcualtenum edgesand unique index_ ,umbers on the original Image

running calculatenum edges and unique Index_numbers on the subimage

The threshold for this run is 0.25000003.

-subimage-five-edge-list-:
((0 11) (7 11) (4 13) (2 15) (3 15) (4 15) (1 16))

*subimage-six-edge-l1st*:

((3 14) (4 14) (2 16) (10 16) (]] 16))

66



*orIg-Image-fIve-edge-list *;
((10 0) (10 2) (13 2) (10 3) (12 3) (13 3) (14 4) (7 5) (9 5) (8 6) (9 6) (10 6) (0 7) (10 7)
(0 8) (S 8) (5 9) (11 9) (7 10) (8 10) (6 11) (9 11) (19 11) (26 11) (8 1?) (9 12) (18 12)
(9 13) (10 13) (13 13) (23 13) (10 14) (18 14) (21 15) (22 15) (23 15) (20 16) (0 17) (13 17)
(14 17) (17 17) (18 17) (19 17) (21 17) (23 17) (36 17) (0 18) (1 18) (6 18) (7 18) (12 18)
(13 18) (17 18) (18 18) j24 18) (34 18) (36 18) (3 19) (6 19) (7 19) (32 19) (15 20) (17 20)
(26 20) (2 21) (15 21) (12 22) (26 22) (27 22) (32 22) (36 22) (12 23) (13 23) (25 23) (0 24)
(11 24) (12 24) (25 24) (0 25) (4 25) (5 25) (7 25) (4 26) (5 26) (6 26) (13 27) (25 27)
(26 27) (3 28) (26 28) (34 29) (0 30) (34 30) (36 30) (12 31) (13 31) (32 31) (24 32) (25 32)
(26 32) (32 32) (36 32) (22 33) (1 34) (11 34) (21 34) (22 34) (23 30~ (24 34) (28 34) (1 35)
(12 35) (35 35) (26 36) (27 36))

-crig-image-3ix-edge-list*:
((1 0) (11 0) (11 1) (12 2) (10 4) (6 5) (10 5) (11 5) (6 7) (7 7) (9 8) (10 9) (9 10) (7 11)
(8 11) (17 11) (18 11) (17 12) (11 13) (12 13) (16 13) (18 13) (13 14) (16 14) (22 14) (23 14)
(16 15) (17 15) (21 16) (29 16) (30 16) (8 18) (25 18) (1 19) (2 19) (16 19) (17 19) (35 19)
(36 19) (16 20) (35 20) (36 20) (14 21) (32 21) (33 21) (34 21) (35 21) (36 21) (13 22)
(14 22) (25 22) (0 26) (7 26) (1 27) (2 27) (12 27) (0 29) (2 29) (1 30) (34 31) (36 31)
(12 321 (13 32) (13 33) (23 33) (27 33) (3 34) (13 34) (25 35) (26 35) (27 35) (3 36) (25 36))

By comparing nine-block cells with 5 edges, the program has correctly found
that the upper left-hand corner of the subimage corresponds to the following
x and y coordinates, respectively, of the original Image:

19

By comparing nina-block Cells with 6 edges, the program has correctly found
that the upper left-hand corner of the subimage corresponds to the following
x and y coordinates, respectively, of the original image:

19
0

2 and 16 are the x and y coordinates of the original Image point
that is the upper left-hand corner of the subimage.

running calculate gradient on the orig-Image
running calculate gradient on the 3ubimage
running select threshold
running calcualte nurn edges and ~unique _ index _numbers on the original image
running cal culat e njmedges arnd uni qiu~index numbers on the subimage

The threshold for this run is 0.35.

*subimage-five-edge-ist
t
:

((0 3) (1 3) (13 4) 112 5) (13 5) (11 6) (12 6) (10 7) (1] 7))

*subimage-six-edge-list*:
NIL.

*orig-image-five-edge-]ist*:
((3 3) (12 4) (14 4) (6 7) (9 8) (8 9) (11 9) (16 15) (30 16) (1 19) (2 19) (3 19) (15 20)

(14 21) (15 21) (13 22) (14 22) (26 22) (12 23) (13 23) (0 26) (0 28) (12 33) (13 33) (25 33)
(26 33) (2 35) (2 36) (3 36))

*orig-image-six-edge-l ist *2

((7 7) (8 7) (9 7) (7 9) (9 9) (16 13) (17 13) (16 14) (17 14) (0 27))

By comparing nine-block cells with 5 edges, the program has correctly found
that the upper left-hand corner of the subimage corresponds to the followicg
x and y coordinates, respectively, of the original Image:

2
16

67



There are no six-edge blocks in the subimage.

20 and 20 are the x and y coordinates of the original image point
that is the upper left-hand corner of the subimage.

running calculate gradient on the orig-image
running calculate gradient on the subimage
running selectthreshold
running calcualtenumedgesand unique indexnumbers on the original image
running calculate_num_edgesanduniqueindex numbers on the subimage

The threshold for this run is 0.3.

*subimage-five-edge-list':
((6 0) (13 0) (12 1) (16 1) (5 2) (6 2) (7 2) (6 8) (14 11) (16 11) (12 12) (16 12) (5 13)
(15 15) (5 16))

*subimage-six-edge-]ist':

((12 0) (6 13))

*orig-image-five-edge-list*:

((1 0) (11 0) (11 1) (12 2) (13 2) (13 3) (11 4) (12 4) (14 4) (6 5) (9 6) (10 6) (6 7) (9 8)

(10 9) (11 9) (9 10) (8 11) (26 11) (9 13) (18 13) (18 14) (23 14) (16 15) (17 15) (29 16)
(30 16) (13 17) (14 17) (12 18) (13 18) (3 19) (33 19) (34 19) (35 19) (15 20) (26 20) (33 20)
(2 21) (15 21) (32 21) (36 21) (12 22) (25 22) (26 22) (27 22) (12 23) (13 23) (11 24) (12 24)
(7 26) (2 28) (26 28) (0 29) (1 29) (34 31) (36 31) (32 32) (36 32) (12 33) (13 33) (25 33)

(2 34) (35 35) (3 36) (25 36))

*orig-image-six-edge-]ist-:

((11 2) (7 7) (8 7) (9 7) (7 9) (8 9) (16 13) (16 14) (1 19 (2 19) (32 20) (14 21) (13 22)
(14 22) (0 26) (1 27) (1 28) (26 33) (2 35) (2 36))

By comparing nine-block cells with 5 edges, the program has correctly found
that the upper left-hand corner of the subimage corresponds to the following

x and y coordinates, respectively, of the original image:

20
20

By comparing nine-block cells with 6 edges, the program has correctly found

that the upper left-hand corner of the subimage corresponds to the following
x and y coordinates, respectively, of the original imae:

20

20

68



APPENDIX D

USER'S MANUAL

A. USING THE PROGRAM

To use this program, you must have an image file that

meets the criteria described in Appendix A, and you must have

a Symbolics computer with a LISP compiler. Follow these

steps:

1. Load the program.

2. Type the command, (make_image_array "<filename>",),

replacing <filename> with the name of the image file

you want to process.

3. Type the command, (initialize).

4. If you want the output to go to a file, type

(open_outputfile "<filename>,,), again replacing

<filename> as appropriate. NOTE: only one such file

may be open during any run.

5. Type the command, (setup x y), replacing x and y with

the coordinates within the original image of the

subimage you wish to process.

6. Type the command, (process-images).

7. If you have opened an output file and do not wish to

send the results of any other run to that file, type

(closeoutputfile *fd*). NOTE: you may send as many

runs of the program to an output file as you like; if

69



the file is open during subsequent runs, the results

of those runs will be sent to it. Also, if you fail

call this function when you are done, you will not be

able to access your file.

B. DISPLAYING AN IMAGE

To display an image, use function displayimage after you

have called function set_up (Step 5 above). To display the

original image, simply type:

(displayimage *orig-image-array* 0 0 *size*)

To display the subimage, type:

(displayimage *orig-image-array* *subimage-x*

*subimage-y* *subimage-size*)

70



LIST OF REFERENCES

1. Charniak, E. and McDermott, D., Introduction to Artificial
Intelligence, pp.89, 99-100, Addison-Wesley Publishing
Company, 1985.

2. Sando, J. M., "A Texture Analysis Approach To Computer
Vision for Identification of Roads in Aerial Photographs,"
Master's Thesis, Naval Postgraduate School, Monterey,
California, December 1987.

3. Roman, G., Laine, A. F., and Cox, K. C., "Interactive
Complexity Control and High-Speed Stereo Matching,"
Proceedings of the Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 171-172, Computer
Society Press, 1988.

4. Hartley, C. A., "A Computer Simulation Study of Station
Keeping By an Autonomous Submersible Using Bottom-Tracking
Sonar," Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1988.

5. Encyclopedia Americana, V. 1, pp.217,219, Grolier
Incorporated, 1987.

6. Newhall, Beamont, The Airborne Camera, p.63, Hastings
House, Publishers, Inc., 1969.

71



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940-5000

4. Curriculum Officer, Code 37 2
Computer Technology
Naval Postgraduate School
Monterey, California 98940-5000

5. Professor Neil C. Rowe, Code 52RP 3
Computer Science Department
Naval Postgraduate School
Monterey, California 93940-5000

6. LCDR J. D. Wolfe 2
Executive Officer
NARDAC San Francisco
NAS Alameda, California 94501

72


